Practically-exploitable Cryptographic
Vulnerabilities in Matrix

Martin R. Albrecht®, Sofia CeliT, Benjamin Dowlingi and Daniel Jones®
* King’s College London, martin.albrecht@kcl.ac.uk
T Brave Software, cherenkov@riseup.net
¥ Security of Advanced Systems Group, University of Sheffield, b.dowling@sheffield.ac.uk
SInformation Security Group, Royal Holloway, University of London, dan jones@rhul.ac.uk

Abstract—We report several practically-exploitable crypto-
graphic vulnerabilities in the Matrix standard for federated real-
time communication and its flagship client and prototype imple-
mentation, Element. These, together, invalidate the confidentiality
and authentication guarantees claimed by Matrix against a
malicious server. This is despite Matrix’ cryptographic routines
being constructed from well-known and -studied cryptographic
building blocks. The vulnerabilities we exploit differ in their
nature (insecure by design, protocol confusion, lack of domain
separation, implementation bugs) and are distributed broadly
across the different subprotocols and libraries that make up
the cryptographic core of Matrix and Element. Together, these
vulnerabilities highlight the need for a systematic and formal
analysis of the cryptography in the Matrix standard.

I. Introduction

Matrix [1] is an open standard and communication proto-
col roughly aiming to do for real-time communication what
SMTP does for email. In particular, the specification defines
a federated communication protocol allowing clients, with
accounts on different Matrix servers (their homeservers), to
exchange messages across the entire ecosystem. Since this
setting inherently involves untrusted third party servers, the
specification enables end-to-end encryption by default.!
While Matrix’ federated nature makes it difficult to assess
how widely it is used, several notable organisations and
institutions have adopted it or announced plans to do so. For
example, both KDE and Maozilla announced plans to switch
their internal communications to Matrix in 2019; the Fourth
Estate announced its plans to build an encrypted messenger for
journalists and news organisations based on Matrix in 2021;
the French government announced plans to create their own
instant messaging app — Tchap — based on Matrix which was
released in 2019; the German ministry of defence launched
BwMessenger — for use in internal, official (and classified)
communication — based on Matrix in 2020 with a view to
mave over other parts of the German government; the German
healthcare system announced its plans to adopt Matrix in 2021.
In March 2021, matrix.org — the most popular Matrix server

'In addition to standard security considerations such as breaches or lack of
trust in a single-server setting.

— announced that there are 28 million global visible accounts.
The Element (see below) wehsite claims +60M Matrix users.

The most popular implementations of the Matrix server
and client are Synapse and Element (Desktop, Android, iOS,
Web) respectively. While the security guarantees of Ma-
trix and these popular implementations have received at-
tention from the information security practitioners commu-
nity — e.g. CVE-2022-31052, CVE-2022-23597, CVE-2021-
41281, CVE-2021-39163, CVE-2021-39164, CVE-2021-
32659, CVE-2021-32622 and CVE-2021-20471 — its bespoke
cryptographic protocol had, prior to this work, not received
an in-depth treatment from the cryptographic (academic or
practitioner) community. That is, while Matrix uses TLS to
secure the communication between clients and servers and
between servers (for federation), end-to-end encryption is
realised using a custom cryptographic protocol called Megolm
which extends Olm to support group chat (see below). Since in
Matrix every chat is a group chat, including 1-on-1 chats (as
users have different devices), the study of its Megolm group
messaging protocol is central to understanding its security
guarantees. We begin by describing the Matrix cryptographic
protocol.

A. Matrix Overview

In Matrix a user may have several devices (e.g. a phone and
a laptop). For a user Alice with identifier A, we refer to their
ith device as (A,i) with device identifier D4 ;. Each user
has an account with a homeserver, which allocates their user
and device identifiers. There are many homeservers, i.e. the
protocol is federated, but for our purposes it suffices to think
of the network of homeservers as a single such homeserver
that facilitates communication.

A room is a collection of devices communicating in a
single conversation. Each unique pair of devices in a room
shares an Olm channel [2], used to share and exchange
channel establishment information for the devices’ Megolm
channels [3]. The Olm protocol is an implementation of a
modified Triple Diffie-Hellman (3DH) key exchange proto-
col [4]? and the Signal Double Ratchet algorithm [6], [1]. Olm

23DH key exchange is a pre-cursor to the Extended Triple Diffie-Hellman
(X3DH) key exchange protocol [5].

https://matrix.org/blog/2020/05/06/cross-signing-and-end-to-end-encryption-by-default-is-here
https://dot.kde.org/2019/02/20/kde-adding-matrix-its-im-framework
https://matrix.org/blog/2020/03/03/moznet-irc-is-dead-long-live-mozilla-matrix
https://www.fourthestate.org/press-releases/fourth-estate-is-building-a-secure-encrypted-messenger-app/
https://www.zdnet.com/article/french-government-releases-in-house-im-app-to-replace-whatsapp-and-telegram-use/
https://www.presseportal.de/pm/76712/4764023
https://matrix.org/blog/2021/07/21/germanys-national-healthcare-system-adopts-matrix
https://matrix.org/blog/2019/04/11/we-have-discovered-and-addressed-a-security-breach-updated-2019-04-12
https://www.youtube.com/watch?v=TzUfS08lMek&t=265s
http://archive.today/2022.08.11-121218/https://element.io/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-31052
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23597
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41281
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41281
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-39163
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-39164
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-32659
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-32659
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-32622
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29471

0 = Olm.Encrypt(kag, (Sgpk,
Megolm.Init 0 YPt(kas, (Sgpks Tmg)) ,

(6;;31(’ 6g11ka (ng)

(a) Alice’s device (left) sending Megolm channel information over
pairwise Olm channels.

Megolm.Encrypt(Sg. p)

()

(b) Alice’s device (left) sending payload data over the unidirectional
Megolm channel.

Fig. 1: Alice establishes a Megolm channel (a) and sends a
ciphertext (b).

plaintexts exchanged between devices are not visible to users,
and are used to manage Megolm channels as in Fig. 1. Out-
of-band verification allows users to verify that the received
(device-specific) Olm public keys are actually owned by that
device.

Each Megolm channel [3] is a unidirectional channel,
used to send payload information from one device to all
other devices in the room. The composition of unidirectional
Megolm channels enables groups of devices to communicate in
a single conversation. These unidirectional Megolm channels
are used to exchange all instant messages (those entered and
seen by users). All conversations are implemented as group
messaging, even with only two devices present. We use the
terms Megolm channel and Megolm session interchangeably,
but prefer the latter to emphasise a party’s view or state of a
channel.

After channel establishment, senders (and receivers) sym-
metrically ratchet (via the bespoke Megolm Ratchet [3]) the
shared secret state forward after each message sent (resp. re-
ceived) by the unidirectional channel, aiming to achieve for-
ward secrecy. We note, however, that the specification allows
implementations to keep old copies of the ratchet on the
receiving side [3], [Z] — something which Element does — and
that this invalidates forward secrecy guarantees. In addition,
senders can periodically generate a new (and independent)
Megolm secret state, and send it to the receiving devices in
the room via Olm, thus aiming to achieve some form of post-
compromise security.

Each device has a unique cryptographic identity (with long-
term signing keys). Matrix optionally allows users to verify
and sign each others identities and devices. The Cross-Signing
module defines cryptographic identities for users and their
devices (each consisting of one or more Ed25519 [8] key
pairs). These are linked with one another using Ed25519
signatures, as the result of verification through the Verification
Framework. It provides protocols for users to verify other
users, and their own devices, using an out-of-band channel. It
provides two protocols: Short Authentication String (SAS)

verification and QR code verification.

By default, a user’s secret cross-signing keys are generated
and stored on the first device for which they login. However, it
is important for a user to be able to recover their cross-signing
identity if they lose access to this device (or simply log out).

The cross-signing module uses the Secure Secret Storage
and Sharing (SSSS) module to store and backup users’
secret keys. SSSS enables users to backup secrets to their
homeserver (encrypted using a recovery passphrase) as well
as to share those secrets with their verified devices (over the
Olm protocol). The SSSS module provides a generic facility
for storing and sharing user secrets.

In addition to SSSS, Matrix offers two modules to enable
devices to backup and share Megolm sessions specifically. The
Key Request protocol provides a means for devices to request
and share copies of inbound Megolm sessions with each other.
The Server-side Megolm Backups module enables devices to
backup copies of inbound Megolm sessions on the server. This
allows a user’s new device to gain access to old messages the
user has access to, even if no other devices are online (that
could otherwise distribute the sessions using the Key Request
protocol). The recovery key used to decrypt these backups is
itself stored and shared using the SSSS module.

B. Prior Work

Cryptanalysis: An audit of the Olm and Megolm protocols
(along with their reference implementation) was performed by
NCC Group in 2016 [Z]; this audit found a number of security
issues that have now been fixed or recorded as limitations in
the protocol specification [3], [2]. Since then, several further
cryptographic vulnerabilities have been reported, e.g. CVE-
2021-34813 and CVE-2021-40824. Wong reported a vulner-
ability in the out-of-band verification provided by the SAS
protocol in Matrix [9, Chapter 11]. These suggest that further
study is needed to assess the resistance of Matrix to cryptana-
Iytic attacks. In 2022 Matrix started a series of audits of their
(future) core libraries [10], [11].

Formal analysis: As mentioned above, Olm is a modified
implementation of the Signal protocol, which itself has re-
ceived multiple formal analyses over the last seven years [12],
[13], [14]. Further, the Megolm protocol shares its architecture
with the Sender Keys variant of the Signal protocol [15].
This variant is also used to implement group messaging in
WhatsApp. For this reason, existing analysis of these protocols
will be relevant to Megolm; [16] provides one such example.
However, none of these works cover Olm or Megolm itself.

C. Contributions

We report several practically-exploitable vulnerabilities in
the end-to-end encryption in the Matrix standard and de-
scribe proof-of-concept attacks exploiting these vulnerabil-
ities. When relying on implementation specific behaviour,

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-34813
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-34813
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-40824

these attacks target the Matrix standard as implemented by
the matrix-react-sdk and matrix--js—sdk libraries.?
These libraries provide the basis for the aforementioned Ele-
ment flagship client.

We are primarily interested in a setting where encrypted
messaging and verification are enabled, i.e. in the presence of
the strongest protections offered by the protocol. Furthermore,
all attacks require cooperation of the homeserver. This is
a natural threat model to consider, given that end-to-end
encryption aims to provide protections against such untrusted
third parties. As mentioned above, for ease of exposure, we
assume a single homeserver in this work. We report the
following vulnerabilities and attacks:

a) Trivial confidentiality break: In Section LI we start
by reporting two trivial attacks breaking confidentiality of
Megolm channels, the central object in Matrix secure mes-
saging, thus breaking confidentiality of user messages. These
attacks exploit the homeserver’s control over the list of users
and/or devices in a room. The attacks differ in whether they
target the list of users in a room or the list of devices of a user.
We note that this attack does not break confidentiality of the
underlying Olm sessions, nor does it break the cryptographic
guarantees of individual Megolm sessions. Instead, we use the
homeserver’s control over the room participants to force target
clients into sharing decryption keys with devices under the
attacker’s control. These attacks are enabled by design flaws.

b) Attack against out-of-band verification: In Section IV we
report an attack on out-of-band verification in Matrix. This
enables an attacker to convince a target to cryptographically
sign (and thus verify) a cross-signing identity controlled by
the attacker. This attack exploits a lack of domain separation
between device identifiers and users’ master signing keys.
The attack enables a mallory-in-the-middle (MITM) attack
breaking confidentiality and authenticity of the underlying
Olm channels (and thus also Megolm channels). This attack
is enabled by an insecure implementation choice permitted by
the specification which does not enforce domain separation.

c) Semi-trusted impersonation: In Section ¥ we report on
an impersonation attack against Megolm by which attackers
achieve the same level of authentication as keys honestly
forwarded through the Key Request protocol (cf. Section LI-H).
Since the Key Request protocol does not provide the same se-
curity guarantees as non-forwarded keys, messages decrypted
using forwarded keys are flagged as less trustworthy in the
Element user interface (UI). Whilst Matrix clients restrict
who they share keys with, no verification is implemented
on what key shares to accept. Our attack exploits this lack
of verification in order to send attacker controlled Megolm

3Qur analysis is based on, and our proof-of-concept attacks tested against,
Element Web at commit #479d4bf with matrix-react-sdk at commit
#59h9dle and matrix—js—-sdk at commit #4721aa1. We note that
while these SDKs are still the default, Matrix is in the process of transitioning
to matrix-rust-sdk [1Z].

sessions to a target device, claiming they belong to a session
of the device they wish to impersonate. The attacker can then
send messages to the target device using these sessions, which
will authenticate the messages as coming from the device
being impersonated. This is enabled by an implementation bug
supported by a lack of guidance on processing incoming key
shares in the specification.

d) Trusted impersonation: In Section VI-B we report on
a second impersonation attack against Megolm which builds
on the first. Here, we exploit protocol confusion, whereby
message types expected to originate from an Olm channel
will be accepted when sent over a Megolm channel. Briefly,
the attack proceeds by initiating a new Megolm session over
the Megolm channel established through the previous attack
(Section Y). This inner shared Megolm session inherits its
sender from the outer, forged Megolm session, but without
inheriting its forwarded status. Thus, this attack allows an
attacker to upgrade the level of trust enjoyed by the key
material sent by the attacker such that no indication is given
in the UI that a user should treat it with caution. That is,
this attack convinces a target device of the validity of the
impersonated session to a stronger degree than legitimate
execution of the Key Request protocol. As a consequence,
an attacker can outperform a legitimate party in convincing
a target device of the validity of a sending identity. This is
enabled by an implementation bug aided by the overall design
of cryptographic processing in matrix—js-sdk.

e) Impersonation to confidentiality break: In Section VI-C
we report on a confidentiality break against Megolm which
builds upon the semi-trusted impersonation attack in Sec-
tion V. Upon completing out-of-band self-verification, the
newly verified device will use the SSSS protocol to request
a copy of the key used for server-side Megolm backups from
the verifying device. The Olm/Megolm protocol confusion in
Section VI-A (also exploited in Section VI-B) can be exploited
by an attacker to impersonate a trusted device and reply to the
request, setting the Megolm backup key used by the newly
verified device.* The device will accept this key and proceed
to backup inbound Megolm sessions to the homeserver. The
attacker and colluding homeserver are then able to decrypt the
backups, giving them access to the plaintext of every Megolm
message the target device has access to. This is enabled by an
implementation bug.

f) IND-CCA break: AES-CTR is used for encryption in both
the SSSS protocol and in symmetric Megolm Key Backups.
However, the initialisation vector (IV) for AES-CTR is not
included in the message authentication code (MAC). A similar
issue exists when attachments are shared. This can be exploited
to break the IND-CCA security of the underlying encryption
scheme: an adversary is able to decrypt a challenge cipher-
text by querying encryption and decryption oracles, without

4That is, the attack in Section VI=C exploits the same class of vulnerability
as Section MI-B, but a different instance of this vulnerability.

https://element.io/
https://element.io/
https://github.com/vector-im/element-web/tree/479d4bf64d97adea9611644695cdb373647fc644
https://github.com/matrix-org/matrix-react-sdk/tree/59b9d1e8189b00bde440c30a962d141a1ebfa5a0
https://github.com/matrix-org/matrix-react-sdk/tree/59b9d1e8189b00bde440c30a962d141a1ebfa5a0
https://github.com/matrix-org/matrix-js-sdk/tree/4721aa1d241a46601601259ec7ca6db9ff1bb5fb

requesting decryption of the challenge ciphertext directly.
However, in practice we do not know how to instantiate this
attack and thus it, in contrast to those mentioned so far, is
only of theoretical interest. See Section VII. This is an issue
in the Matrix specification.

In summary, at the time of analysis, we found that Matrix
and its flagship client Element as deployed provided neither
authentication nor confidentiality against homeservers that
actively attack the protocol, i.e. its end-to-end encryption fell
short of the security guarantees expected from it.

D. Disclosure

We disclosed our attacks to the Matrix developers between
20 May 2022 and 6 July 2022. They acknowledge these as
vulnerabilities except for one of our attacks on confidentiality
(discussed in Section III-C) which they initially considered as
an accepted risk (but aimed to mitigate regardless).> We coor-
dinated a public vulnerability disclosure for the 28 September
2022, to coincide with the first set of countermeasures. These
aimed to provide immediate fixes (to varying degrees) for the
attacks in Sections III to VI. At the time of public disclosure,
the Matrix specification and Element were no longer vulnera-
ble to the attack against out-of-band verification (Section IV)®,
the semi-trusted impersonation attack (Section V)?, the trusted
impersonation attack (Section ¥I-R)® and the impersonation
to confidentiality attack (Section VI-C)?. A second set of
countermeasures is currently in the design phase, which aim
to provide complete fixes for every vulnerability in this work.

In particular, the attacks concerning homeserver control of
room membership and user’s device lists (Section II) was
fixed by the time of public disclosure. However, a new local
per-room setting will be added alongside the disclosure in
order to mitigate the homeserver’s control of user device lists.
In the long-term, the Matrix developers plan to develop fixes
for both of these attacks (detailed in Section III-C). A fix for
the IND-CCA break (in Section VII) will also be distributed
at a later date. Since the IND-CCA break appears not to be
practically exploitable, this should not affect users.

To aid readability, throughout the remainder of this work, we
use the present tense to refer to vulnerabilities and behaviours
in Matrix clients or servers even if these have since been
addressed in response to our vulnerability disclosures.

SPost public disclosure, the co-founder and project lead for Matrix and the
CEO and CTO at Element, went on record stating: “On the other hand, many
in the cryptography community consider this a serious misdesign. Eitherway,
its avoidable behaviour and were ramping up work now to address it by
signing room memberships so the clients control membership rather than the
server.” [18]

9The Matrix developers assigned CVE-2022.39250 to this vulnerability.

"The Matrix developers assigned CVE-2022-39246, CVE-2022-39249 and
CVE-2022-39257 to this vulnerability. In their review of the ecosystem they
also discovered further clients vulnerable to variants of our attack and assigned
CVE-2022-39252 (CVE-2(022-39254 and CVE-2022-3926A4.

8The Matrix developers assigned CVE-2022-39248, CVE-2022-39251 and
CVE-2022-39255 to this vulnerability.

9This vulnerability is covered by the CVEs for the previous item.

E. Scope

First, we exclusively considered the Matrix specification
and the Matrix flagship client Element. There are other
clients available, see e.g. [19], some of which also use the
matrix—-js—-sdk and some of which do not, but we did not
investigate to what extent these other clients are vulnerable to
our attacks or variants thereof. For the avoidance of doubt,
any implementation specific behaviour reported throughout
exclusively refers to matrix—-js-sdk and Element, even
when we write “Matrix”.

Second, in this work we focus on authentication and con-
fidentiality, i.e. the two most fundamental security properties
provided by cryptography, without the need for a client se-
cret compromise. Matrix aims to provide stronger notions of
security such as forward secrecy (i.e. before a client secret
compromise), post-compromise security (i.e. eventually after
a client secret compromise) and deniability. Given our results
against more fundamental security goals, we consider such
more advanced notions of security out of scope.

Third, our attacks target Matrix in the setting where ev-
ery device and user have performed out-of-band verification.
In this ideal scenario, the client interface will display a
warning next to messages that are unencrypted, or cannot
be cryptographically linked to the claimed sender. From the
perspective of an attacker, this is the most challenging and thus
interesting setting. However, when a user has not been verified,
the Element client will no longer display such warnings.
The Matrix specification does not enforce that messages in
encrypted rooms are indeed encrypted. This renders imper-
sonation attacks trivial: the attacker, in collusion with the
homeserver, simply sends an unencrypted message with a
forged sender. As such, even when the issues described in
this work are fixed, clients operating in this non-ideal setting
do not offer any cryptographic authentication guarantees.

II. Preliminaries

We write semi-trusted for messages that are accepted but
displayed with a warning and trusted for messages that are
accepted (without warning).

A. Algorithms

We reference the following algorithms:
e sort(xy,xy,..
[x1,x2,...,x.].
¢ HMAC-SHA-256(k,m) is a Hash-based Message Authen-
tication Code (HMAC) constructed with the SHA-256 [20Q]
hash function taking as input a key k and message m [21].
Matrix truncates HMAC outputs to 64 bits*?, which contrasts
with the HMAC RFC [22] which recommends at least 128 bits

.,Xp) returns a sorted copy of the list

10This issue was noted in an audit[11] and will be fixed in a future version
of the Olm and Megolm specifications.

https://nvd.nist.gov/vuln/detail/CVE-2022-39250
https://nvd.nist.gov/vuln/detail/CVE-2022-39246
https://nvd.nist.gov/vuln/detail/CVE-2022-39249
https://nvd.nist.gov/vuln/detail/CVE-2022-39257
https://nvd.nist.gov/vuln/detail/CVE-2022-39252
https://nvd.nist.gov/vuln/detail/CVE-2022-39254
https://nvd.nist.gov/vuln/detail/CVE-2022-39264
https://nvd.nist.gov/vuln/detail/CVE-2022-39248
https://nvd.nist.gov/vuln/detail/CVE-2022-39251
https://nvd.nist.gov/vuln/detail/CVE-2022-39255

for SHA-256 (no less than half the length of the hash output)
and not less than 80 bits.

e HKDF-SHA-256(s, k, ¢, €) is a Hash-based Key Derivation
Function (HKDF) constructed with SHA-256 where s is the
salt, k is the secret key material, ¢ is the info/context and ¢ is
the output length in bytes [23], [24].

e AES(k,m) is AES [25] taking a key k and a message block
m of size 128 bits. Matrix uses AES-256, i.e. keys of length
256 bits.

e AES-CTR(iv, k,m) is AES in counter (CTR) mode [26]
where iv is the nonce, k is an AES encryption key and m is
a message.

e AES-CBC(iv, k,m) is AES in cipher block chaining (CBC)
mode [26] where iv is the nonce, k is an AES encryption key
and m is a message. Matrix uses PKCS7 [27] padding to split
plaintexts into blocks for CBC mode in the Olm and Megolm
protocols, as well as the asymmetric Megolm backup scheme.

B. Message Types

Matrix supports a number of message types. Messages with
the type m.room.message are instant messages entered
and seen by users. Encrypted messages consist of an inner
plaintext message (with its own message type) that has been
encrypted and placed in an outer message structure with the
type m.room.encrypted. The outer structure of an en-
crypted message is an unauthenticated wrapper, specifying the
encryption algorithm used. We introduce additional message
types in this text as needed.

Messages are sent either to a particular room, in which case
they will be distributed by homeservers to the devices of all
users in the room, or to a particular device. In the latter case,
these are known as fo-device messages.

C. Users, Identities and Cross-Signing

Upon registration, each user is allocated a user identifier
A of the form @localpart:domain by their home-
server. Similarly, when a new device logs in with ac-
count credentials, the homeserver allocates device identifier
D4 ;. The device then generates its keys (a) Device Finger-
print/Signing Key (dska i, dpk, ;), and (b) Olm Key Bundle
(iskaisipka ;> eska.irepky ;> f5ka ;> fPk ;). 1t registers them
with the homeserver (as a bundle self-signed with dsk,4 ;). The
tuple (eska,;, epky, ;) represents the pre-key bundle consisting
of one or more key pairs. The tuple (fsk, ;,fpk, ;) represents
a bundle of one or more fallback key pairs [28].

The cross-signing module [29] provides support for crypto-
graphic user identities. It defines three sets of cryptographic
keys for each user in the form of Ed25519 digital signature key
pairs: (a) Master Keys (mska, mpk,); (b) User-signing Keys
(uska, upk 4); (c) Self/Device-signing Keys (sska, spk4).

These key pairs are generated on the device where cross-
signing is setup. The master key mpk, signs both the self-
signing key ssks and the user-signing key upk,. The self-
signing key is used to sign a user’s own devices, while the

user-signing key is used to sign other users’ master keys. These
signatures are created and distributed by the homeserver.

When logging in to a new device, users are prompted
to (optionally) verify it (as described in Section II-D). An
existing device (with control of the user’s cross-signing keys)
and the new device then mutually verify each other out-of-
band. Once verification is complete, the new device’s keys
(dpk 4 ;»ipk, ;) are signed by the user’s self-signing key sska.
The existing device then distributes the cross-signing secrets to
the new device using the secret sharing functionality of SSSS
(Section II-E). This process is referred to as self-verification.

Additionally, when two users are communicating with one
another, they may perform an out-of-band verification between
two of their devices (each device should have a copy of
their respective user’s cross-signing keys). Once verification
is complete, each user will sign the other’s master key mpk
with their user-signing key usk. This process is referred to as
Cross-signing.

Together, these enable pairs of users to verify each other’s
identities, then rely on the other user to verify each of their
own devices. See Fig. 5.

In this work, the term sender identity refers to the combi-
nation of the user’s cross-signing keys and a set of long-term
device keys (dpk, ipk).

Key Description

msky mpk, Master signing key for user A

usk o upk 4 User signing key for user A

ssk A spk 4 Self-signing key for user A

dska; dpka; Fingerprint/signing key for A’s ith device
iska; ipks,; Olm identity key for A’s ith device

eska; epks; Olm ephemeral pre-keys for A’s ith device
fskai fpka; Olm fallback keys for A’s ith device

Fig. 2: Summary of the keys used in Matrix.

D. Out-of-band Verification

The Matrix standard defines an out-of-band verification frame-
work allowing users to verify themselves [1]. This functional-
ity enables users to ensure that the cryptographic identity they
are communicating with correctly maps to the intended user.
This is intended to prevent mallory-in-the-middle attacks in
cases of first use in contrast to a trust-on-first-use approach.

Matrix defines multiple out-of-band verification protocols
within this framework. Element defaults to using the QR Code
Verification Protocol when the device has a camera, and
a Short Authentication String (SAS) protocol in all other
cases. In this work, we refer to users and devices that have
gone through this process as having been verified.

Short Authentication String Protocol: We briefly describe
Matrix’ SAS protocol, focusing on the parts relevant to our
attack in Section IM. The SAS protocol builds upon the ZRTP
key agreement handshake [30]. It uses an ephemeral X25519

key exchange to compute a shared secret. They subsequently
derive a short authentication string using the shared secret and
details of the connection: any attempts to modify the connec-
tion between the two parties should result in them computing
different strings. To detect this, the parties compare their short
authentication strings through an authenticated out-of-band
channel. They then share their cryptographic identities, using
the shared secret for verification.

Figures 3 and 4 describe the SAS protocol for out-of-
band verification. When clients source keys from their home-
server, we represent this through a call to the algorithm
HS.QueryKey. It takes as input a string representing the key
type, followed by a series of indices to identify the particular
key. For example, HS.QueryKey("dpk", A, i) returns dpk 4 ;.

Once the shared secret has been generated, each party
compiles a list of the keys they wish to have signed into an
m.key.verification.mac message (Fig. 9). The shared
secret is used to compute a message authentication code
(MAC) for each key, calculated over its public part and details
from the SAS protocol execution. A second MAC is computed
over a list of key identifiers, corresponding to the list of keys
for which MACs have been included. These MACs are added
to the message, and ensure that only parties in possession of
the shared secret can request keys for signing.

Out-of-band verification is used in two cases. (1) Two users
are verifying each other: The protocol is executed between
a device from each user (each of which holds the user’s
secret cross-signing keys), and each include their master
cross-signing key mpk in the m.key.verification.mac,
which the other device will sign using their user signing
key usk. (2) A user is verifying one of their own devices:
The protocol is executed between the verifying device (which
holds the cross-signing secret keys) and the new device. The
device being verified uses the m.key.verification.mac
message to send their device identity key dpk to the verifying
device. The verifying device uses the device self-signing key
ssk to sign the new device’s identity key dpk and Olm identity
key ipk.

E. Secure Secret Storage and Sharing

The Secure Secret Storage and Sharing (SSSS) module en-
ables devices to share secrets with the user’s other trusted
devices [1]. It provides two sets of functionality: (1) Backup
secret key material to the server, encrypted symmetrically
using a key generated from a master passphrase. (2) Distribute
these secrets to other devices via a request-response protocol,
similar to the Key Request protocol described in Section II-H.

This module is used to backup user cross-signing secrets and
the recovery key for server-side Megolm keys to the server,
as well as to distribute them between a user’s devices.

We briefly describe the secret sharing functionality of SSSS.
Upon completion of self-verification, the newly verified device
will request copies of the user’s secret cross-signing keys and
secret Megolm backup recovery key from the verifying device.
An unencrypted m.secret.request message is sent for

each secret they are requesting. When the verifying device
receives the request, it will check that the requesting device’s
identity is verified, then reply with the requested secret in an
Olm encrypted, to-device m. secret . send message. When
receiving m.secret.send messages, matrix—js—-sdk
requires that the response is encrypted and that the Olm iden-
tity key ipk used for encryption matches the device identifier
they sent the request to.

F. Megolm Sessions

Megolm sessions consist of the following components:
(a) Group signing and verification keys (gsk, gpk) using
Ed25519; (b) Megolm ratchet R and (c) Megolm ratchet
index i. While the nature of the ratchet in Megolm deviates
from Olm and Signal, and is one of the innovations of the
Megolm protocol, its details do not matter for our purposes.
Thus, we may simply think of (i, R) as some symmetric key
material. The group verification key gpk is used as the unique
identifier for sessions. As such, it is also referred to as the
session identifier. Megolm sessions are also referred to as
the room key. A Megolm session is split into an outbound
and inbound session. The inbound session allows the holder
to decrypt and verify messages that were encrypted and
signed by the outbound session. The outbound session contains
Sk = (i, R, gsk, gpk) while the inbound session contains
Sepk = (i, R, gpk). Messages are encrypted using AES in
CBC mode with HMAC applied to the ciphertext, so it is a
encrypt-then-MAC construction. This authenticated ciphertext
is then signed with gsk and the result sent to the homeserver
for distribution. Figure 6 describes how Megolm sessions are
initiated, as well as how they are used to encrypt and decrypt
new messages.

G. Distributing Megolm Sessions

When a session is created, the inbound session is distributed
to the other devices in the room. It is first encrypted and
then signed with the group signing key gsk, wrapped inside
an m.room_key message (Figure 8a), and then sent over
separate pairwise Olm channels between the session creator
and each receiving device. To distribute these Olm ciphertexts
to individual devices, their wrapper is formatted as a to-device
message (Figure 7) which the homeserver will deliver to the
correct device.

Since the Megolm session has been sent over an Olm
channel, the receiving device is able to cryptographically link
the Olm identity (see below) of the sending device with the
session. When a message is verified, decrypted and displayed,
participants use these keys (associated with the Megolm ses-
sion used to decrypt it) to identify the cryptographic identity
of the sender.

H. Key Request Protocol

There are cases where a device should have access to an
inbound Megolm session, but missed its initial distribution.

Dai € Dig

dpkg ; < HS.QueryKey("dpk”, B, j)
15 {0,1}832

Dp i € Did

start(r)

accept(t,com)

~

dpk, ; — HS.QueryKey("dpk”, A, i)
skp, pkp — X25519.KGen(1")
com — SHA-256(pkp)

~

ska, pka — X25519.KGen(1")

key(t, pka)

~

key(t, pkp)

(abort if # SHA-256(pkg) # com)

k «— skp % pkB

¢ «— "MATRIX_KEY_VERIFICATION_SAS"
NAN Da,ill pkall BIl Dg,j |l pkg |l t

sasy — HKDF-SHA-256(0, k, ¢, 32)

k « SkB X pkA

c «— "MATRIX_KEY_VERIFICATION_SAS"
NANDaill pkall BIl Dg,j |l pkg |l t

sasp — HKDF-SHA-256(0, k, ¢, 32)

Alice and Bob compare sas4
and sasp out-of-band.

(abort if sasas # sasp)

macp < SASSendMAC(A, DA’,‘, B, DB,j>
mpk a, dpk i, k1)

mac(t, maca)

mac(t, macg)

macp < SASSendMAC(B, DB’J', A, DA!,‘,
mpkB,dpkB’j,k,t)

~

v « SAS.VerifyMAC(A, D4, B, D, j, macp, k,t)
for (U, D) in v : SAS.SignDevice(U, D)

v « SAS.VerifyMAC(B, D, j, A, D 4 ;,maca, k,t)
for (U, D) in v : SAS.SignDevice(U, D)

Fig. 3: A sequence diagram summarising the SAS protocol. The contents of m.key.verification.mac are described
in Fig. 9, while pseudocode descriptions of SAS.SendMAC, SAS.VerifyMAC and SAS.SignDevice are in Fig. 4. Message
types in the above diagram have had the prefix m.key.verification. removed.

For example, when an existing member of the room adds a
new device, the latter should be given access to all Megolm
sessions created since the device joined that room.

To solve this, the Matrix standard defines a Key Request
protocol, which allows devices in a group to request inbound
Megolm sessions they need (the secret keys they are missing),
and for devices to share them; where permitted.

The protocol starts by the requesting client send-
ing a m.room_key_request to-device message to
each device they are requesting from. When receiving
m.room_key_request messages, each device must de-
termine whether it should share the key with the requesting
device. Devices may only share Megolm sessions with other
devices of the same user or, if they are the session owner, to
devices which they have sent the session to in the past. Addi-
tionally, when sharing sessions with devices of the same user,
those with cross-signing enabled may only share sessions with
other verified devices. To fulfill a request, the sharing device

packages their copy of the inbound Megolm session in session
sharing format [3] (without the signature omg) inside an Olm
encrypted, to-device (Figure 7) m. forwarded_room_key
message (Figure 8h) [1].

I. Server-side Megolm Backups

The Matrix standard provides a mechanism for devices to
backup copies of inbound Megolm sessions to the server.
These backups are shared across different devices of the same
user, enabling new devices to access Megolm sessions when
the user’s other devices are not online (and are, thus, unable
to forward session keys through the Key Request protocol).

A backup configuration, specifying the backup scheme and
key to use, is stored on the homeserver. Clients will trust this
configuration if the field signifying the key to use has been
signed with the user’s master cross-signing key msk, or if the
client already has a copy of the secret part of the key.

SAS.CalcMAC((k, m, ¢)

SASVerlfyMAC(A, DA’,', B, DB’j, mac, k, l)

k" — HKDF-SHA-256(0, k, ¢, 32)
mac — HMAC-SHA-256(k’, m)

return mac

SAS.SendMAC(A, D 4 ;. B, Dy ;. mpk, dpk. k. 1)

¢ «— "MATRIX_KEY_VERIFICATION_MAC" \
IlANDA; Bl Dp,jllt

idgey — "ed25519:" || Dy

macdey <— SAS.CalcMAC (k, dpk, ¢ || iddey)

ides <« "ed25519:" || mpk

maccs < SAS.CalcMAC (k, mpk, ¢ || idcs)

ms « ((idgey, macgey), (idcs, maccs))

ks < SAS.CalcMAC(k, sort(idgey,idcs),c || "KEY_IDS")

return (ms, ks)

SAS.SignDevice(A, D4 ;)

/ Check whether D, is a cross-signing identity
mpk — HS.QueryKey("mpk”, A)
if DA,i = mpk then
return UserVerified(A, mpk)
[/ Otherwise, D A,i refers to a device
else
return DeviceVerified(A, D 4 ;)

((idgev, macgey), (ides, maccs), ks) < mac
¢ «— "MATRIX_KEY_VERIFICATION_MAC" \
1Bl Dgj | Al Daslle
ks’ «— SAS.CalcMAC (k, sort(idgey,idcs), ¢ || "KEY_IDS")
if (ks’ # ks) then
return 0
ve0
for (id,mac) in ((idgey, macgey), (idcs, maces))
"ed25519:" || Dp,j < id
/ Check if this is a device verification request
dpk «— HS.QueryKey("dpk",B,Dp, ;)
if dpk # L then
D «—x
if mac = SAS.CalcMAC (k, dpk, c || id) then
v —vU{(B,D)}
/ Check if this is a cross-signing verification request
elseif (x = HS.QueryKey("mpk", B)
N mac = SAS.CalcMAC(k,x, c || id)) then
mpk «— x
v «— v U{(B,mpk)}
return v

Fig. 4: Algorithms to generate, verify and process m.key.verification.mac messages in the SAS protocol. UserVerified
signs the given user’s master cross-signing key with the current device’s user-signing key. Similarly, DeviceVerified signs the
given device’s fingerprint and Olm identity keys with the current device’s self-signing key. These signatures are uploaded to

the homeserver.

1) Asymmetric Megolm Key Backups: For setup, the client
generates an X25519 [31] recovery key pair. The secret part of
the recovery key pair is either generated from a user-supplied
passphrase, or encrypted and backed up to the server using
SSSS (described in Section II-E). The public key is signed by
the user’s master cross-signing master key msk, then uploaded
to the homeserver as part of the backup configuration.

To backup a Megolm session, each device fetches the
backup configuration from the homeserver. Clients trust the
configuration if they possess the private part of the key, or if
the public key has been signed by msk. Next, they generate
a shared secret by performing DH key exchange with the
recovery key and an ephemeral X25519 key pair. This shared
secret is fed into HKDF-SHA-256 to generate an IV and
key material for authenticated encryption using AES-CBC
followed by HMAC-SHA-256, used to encrypt the inbound
Megolm session. The resulting ciphertext is uploaded to the
homeserver (with the public part of the ephemeral key).

An asymmetric encryption scheme such as this does not
authenticate the party that has created the backup [32]. This
opens clients to a impersonation attack (detailed in Ap-
pendix A).

2) Symmetric Megolm Backups: MSC 3270 [32] intro-
duces an alternative scheme for encrypting server-side backups
that does not have such a shortcoming. The scheme uses
a shared secret to encrypt backups, since only devices in
possession of the secret can create and decrypt such backups.
Thus, clients do not necessarily mark sessions they receive
through symmetric server-side backups as untrusted.

For setup, the client generates a secret from either a user-
supplied passphrase or a secret stored with SSSS.

To backup a Megolm session, each device fetches the
backup configuration from the homeserver. Clients trust the
configuration if they possess the key, or if the key has been
signed by msk. To encrypt the session, the shared secret is
fed into HKDF-SHA-256 to generate key material for au-
thenticated encryption using AES-CTR and HMAC-SHA-256
(using a randomly generated IV).

Whilst the asymmetric scheme remains the default method
of encrypting Megolm backups (at the time of writing), a
client will use this scheme if directed to by a trusted backup
configuration.

https://mailarchive.ietf.org/arch/msg/cfrg/-9LEdnzVrE5RORux3Oo_oDDRksU/

upk 4

<
7

(dpkaysipkay) ™y
T (dpkA,n’ ipkA,n)

spk 4 upkp spkg

e
&
4

(dpkg.,.ipkg) -,
T (dpkB,m’ ipkB,m)

g s

Fig. 5: An example of the long-term key hierarchy for two
users, Alice and Bob, and each of their devices [1]. Each
arrow denotes a signature. Dashed arrows denote signatures
resulting from an out-of-band verification between Alice and
Bob. Dotted arrows denote signatures resulting from an out-of-
band verification between a user cross-signing session and a
device (self-verification). Since the cross-signing session exists
on the first device where cross-signing is enabled, the first
device identity signed by each user is not the result of an out-
of-band verification. Diagram based on [1, #cross-signing].

ITI. Homeserver Control of Room Membership

In this section we consider the control that the homeserver
has over metadata such as room membership, and the device
list of a user. We consider two attacks that compromise
confidentiality guarantees. The attacks in this section are trivial
because no cryptographic protection exists by design.

A. Room Members

The Matrix standard allows roles and permissions to be
assigned to users in a room. Amongst other things, these roles
and permissions control which users are allowed to manage
the room membership. However, room management messages
(even in end-to-end encrypted rooms) are neither encrypted,
checked for integrity nor cryptographically authenticated. A
malicious homeserver can forge room management messages
to appear as if they are from users with permission to change
room membership, simulating the process of a new user
being invited then joining the room. Thus, the homeserver has
control of the member list also for encrypted rooms.

While the specification does not require mitigations, the
Element client exhibits some behaviour meant to mitigate such
attacks. That is, when a user is added to a room, this will be
displayed as an event in the timeline, and is thus detectable
by users. However, we stress that such a detection requires
careful manual membership list inspection from users and
that to participants, this event appears as a legitimate group
membership event. In particular, in sufficiently big rooms such
an event is likely to go unnoticed by users. This immediately
compromises the confidentiality of the room.

Megolm.Init(1")

i—0

R {0,1}1024

(gsk, gpk) — Ed25519.KGen(1")

ver « 0x03

omg < Ed25519.Sign(gsk, (ver,i, R, gpk))
Sk «— (ver,i, R, gsk, gpk)

Sgpk « (ver,i, R, gpk)

return Sy, Sgpp, Omg

Megolm.Encrypt(Ssx, m)

(ver,i, R, gsk, gpk) — Sgg

ke |l kp || kivy «— HKDF(0, R, “MEGOLM_KEYS”, 80)
¢ «— AES-CBC(k;y, ke, m)

7 «— HMAC (ky,, (ver,i,c))[0 : 8]

o « Ed25519.Sign(gsk, (ver,i,c, 1))

¢’ « (ver,i,c,7,0)

i, R — MegolmRatchet.Advance(i, R)

Gk «— (ver,i, R, gsk, gpk)

return (S, ')

Megolm.Decrypt(Sgp, ¢)

(ver,i, R, gpk) « Ggpi

(ver',i’,c’,r,0) « ¢

if |Ed25519.Verify(gpk, o, (ver,i’,¢’, 7)) then
return (Sg1, L)

(i, R) «— MegolmRatchet.Advance’ ~(i, R)

ke |l kp || kiv < HKDF(0, R, “MEGOLM_KEYS”, 80)

if 7 # HMAC(ky,, (ver,i,c¢’)[0 : 8] then
return (Sg1, L)

m <« AES-CBC .Dec(k;,, ke,)

Sgpk « (ver,i, R, gpk)

return (S, m)

Fig. 6: The Megolm protocol consists of three al-
gorithms, Megolm = (Megolm.Init, Megolm.Encrypt,
Megolm.Decrypt). The MegolmRatchet.Advance(i, R) al-
gorithm takes the Megolm ratchet R and index i, and sym-
metrically advances it.

In environments where cross-signing and verification are
enabled, adding a new unverified user adds a warning to the
room to indicate that unverified devices are present. However,
it is possible for a homeserver to add a verified user to rooms
without changing the security properties of the room. This
allows a colluding homeserver and verified user to eavesdrop
on rooms not intended for them. In other words, the warning
regarding unverified devices is independent to whether the
device is intended to participate in the specific room. Finally
we note that users may, of course, simply ignore warnings.

"messages": {
"<receiver_user_id>": {
"<receiver_device_id>": {
"algorithm":
"m.olm.v1l.curve25519-aes-sha2",
"sender_key": sender_ipk,
"ciphertext": {
"<receiver_ipk>": {
"type": olm_message_type,
"body": ciphertext
FriEl

(a) Message sent by the device.

"type": "m.room.encrypted",
"sender": sender_user_id
"content": {

"algorithm":

"m.olm.vl.curve25519-aes-sha2",
"sender_key": sender_ipk,
"ciphertext": {

"<receiver_ipk>": {

"type": olm_message_type,
"body": ciphertext
P}

(b) Message as forwarded by homeserver.

Fig. 7: Figure Za shows the format of an Olm encrypted to-
device message as it is sent to the homeserver (the message
type, m.room.encrypted, is encoded in the URL). The
homeserver will split up to-device messages, collate them by
device, then redistribute them as a list of messages in the
format seen in Figure 7b. The sender field is added by
the homeserver (amongst other fields not considered in this
document). sender_key is used by the receiving device
to locate the correct Olm session with which to decrypt the
message.

B. Device List

Each user has a list of devices associated with their account.
This list is controlled by the homeserver. It exists in parallel
to (and independently of) the cross-signing/verification system,
which provides a cryptographically controlled list of devices
for a user.

A malicious homeserver may create their own device that
can then be added to the device list of an existing user in a
room they wish to eavesdrop in. Whenever a device in the
room next sends a message, they will share their Megolm
session with the homesever-controlled device. The homeserver
will then be able to decrypt future messages.

Again, the Element client exhibits some behaviour meant
to mitigate such attacks. In environments where cross-signing
and verification are enabled, adding an unverified device to
the user’s list of devices will alert their existing sessions to
start the verification process. To avoid the notification, the
homeserver can present two different versions of the device
list depending on the user requesting it. When a user requests
their own device list, the homeserver does not include the
unverified device. When a different user requests the list, the
homeserver includes an unverified device that they control. The

"type": "m.room_key",
"content": {
"algorithm": "m.megolm.vl.aes-sha2",
"room_1id": room_id,
"session_id": gpk,
"session_key": ver [| 1 [| R || gpk ||
sign(gsk, ver || 1 R || gpk),
"chain_index": 1,

H}

(a) The format of an m.room_key message, used to distribute
the inbound session at the start of the Megolm protocol. In the
specification, these messages are expected to be encrypted using Olm,

then distributed via to-device messaging.
{

"type": "m.forwarded_room_key",
"content": {
"algorithm": "m.megolm.vl.aes-sha2",
"room_id": room_id,
"session_id": gpk,
"session_key": ver [| i || R || gpk,

"chain_index": 1,
"sender_key": claimed_ipk,
"sender_claimed_ed25519_key": claimed_dpk,
"forwarding_curvez25519_key_chain":
[ipk_1, ipk_2, ..., ipk_n],
}}

(b) The format of an m.forwarded_room_key message, used
to send Megolm sessions as part of the key request protocol.
Compared with an m.room_key message, it includes three ex-
tra fields: sender_key, sender_claimed_ed25519_key, and
forwarding_curve25519_key_chain. These messages are ex-
pected to be encrypted using Olm, then distributed via to-device
messaging.

Fig. 8 The formats of m.room_key
m.forwarded_room_key messages.

and

target user’s devices will not be aware that a new, unverified
device has been added to their account. Therefore, their clients
will not present the verification dialog.

Nevertheless, adding an unverified device to the room will
add a warning indicator to the room. But the same caveats as
in Section III-A for this control apply.

C. Remediation

At the time of public disclosure, the Matrix developers plan
to mitigate the homeserver’s control of the device list by
implementing a per-room local setting to prevent sharing keys
with unverified devices.™! This high-assurance setting will stop
the attack described in Section III-B, since clients will refuse
to interact with the unverified devices added by a malicious
homeserver.

In the long-term, the Matrix developers plan to require all
devices to be verified before a user can participate in end-
to-end encrypted conversations. This will be accompanied by
a trust-on-first-use (TOFU) scheme that allows users to trust
a user’s master cross-signing key on their first interaction

"'Element provides a setting to “Never send encrypted messages to unveri-
fied sessions from this session”. We suggest this is made the default behaviour.
However, this does not prevent attacks against authentication.

(without out-of-band verification). The user’s cross-signing
identity is then fixed by the client and cannot be overwritten
by the homeserver.

The developers consider the fact that the homeserver con-
trols room membership as a risk they accept as part of
their threat model. Whilst they do not plan to include any
countermeasures for this attack at the time of disclosure, they
are developing a solution to target this stronger threat model. A
brief summary of their design follows. When inviting a user to
join the room, the inviting user must include the master cross-
signing key of the new user in a signed message. In doing
this, the transcript of invites form a tree of signatures, rooted
in the room’s creation event. This solution is currently in the
design phase.’? The rollout of such a solution will be made
practical by the long-term fixes for the device list attack.

IV. Key/Device Identifier Confusion in SAS

In this section we describe an attack against the SAS protocol
for out-of-band verification. In this attack, a malicious home-
server tricks parties executing the SAS protocol into signing
cross-signing identities it controls, rather than their own. This
enables the homeserver to perform an active MITM attack
against users.

A. Vulnerability

In the SAS protocol, two parties compute a shared secret,
then compare this shared secret through an authenticated
out-of-band channel. Once established, the shared secret is
used as the MAC key for an m.key.verification.mac
message, containing the cryptographic identities for the other
party to sign. In our attack, the homeserver is able to trick
each party into including a homeserver controlled key inside
their message. In effect, requesting the other device to sign a
homeserver controlled identity, rather than their own.

Recall that in the context of cross-signing, out-of-band ver-
ification is used in two cases. First, where two users’ devices
verify each other; and, second, where a user verifies a new de-
vice (self-verification). However, the SAS.SendMAC (Fig. 4)
algorithm, which generates m.key.verification.mac
messages (Fig. 9), does not distinguish between these two
cases. It always sends both keys.

1) Cross-signing keys as devices: Within
matrix—Jjs—sdk and Synapse, cross-signing identities
are sometimes treated as devices. The same is true in the SAS
protocol, as noted in the Client-Server API specification [1].12

1215 [33] a solution to a similar problem is detailed (with the additional
requirement that the membership list is kept private).

13<Verification methods can be used to verify a users master key by using
the master public key, encoded using unpadded base64, as the device ID, and
treating it as a normal device. For example, if Alice and Bob verify each
other using SAS, Alices m.key.verification.mac message to Bob may include
“ed25519:alices+master+public+key’: “alices+master+public+key” in the mac
property. Servers therefore must ensure that device IDs will not collide with
cross-signing public keys.”

{"mac": {"ed25519:<device_id>":
SAS.CalcMAC (k, dpk, c | "ed25519:<device_id>"),
"ed25519:<mpk>":
SAS.CalcMAC (k, mpk, c |
"keys": SAS.CalcMAC} (
k, sort ("ed25519:<device_id>",
c || "KEY_IDS")

"ed25519:<mpk>"), },

"ed25519: <mpk>"),

Fig. 9: The format of an m.key.verification.mac
message for a user with cross-signing setup.

{"mac": {"ed25519:<mpk'>":
SAS.CalcMAC (k, dpk, c |
"ed25519: <mpk>":
SAS.CalcMAC (k, mpk, c |
"keys": SAS.CalcMAC (
k, sort ("ed25519:<mpk'>",
c || "KEY_IDS")}

"ed25519:<mpk'>"),
"ed25519:<mpk>"), },

"ed25519:<mpk>"),

Fig. 10: An m.key.verification.mac message gen-
erated by a user with cross-signing master verification key
mpk, long-term device key dpk and device identifier mpk
(which is also the master verification key of a homeserver
controlled cross-signing identity). Whilst the two entries in
the mac dictionary could be distinguished by the differing
second argument given to SAS.CalcMAC, SAS.VerifyMAC
interprets the first entry as a device, and then passes it
to SAS.SignDevice which interprets it as a cross-signing
identity.

Thus, in some cases the string x in ed25519:<x> is
interpreted as a device identifier, and in others it is interpreted
as a cross-signing master verification key.

Since the homeserver allocates device identifiers, it is able
to generate a string that is both a valid device identifier and
a valid cross-signing master verification key. In this attack,
the homeserver generates a cross-signing identity for the user
they would like to impersonate, then sets this as the device
identifier for the user’s first device. Figure 10 demonstrates
the format of such a message.

2) Processing of m.key.verification.mac: When
processing m.key.verification.mac messages,
matrix—js—-sdk handles the aforementioned ambiguity
inconsistently.

Referring to Fig. 10, mpk’ is both a valid device identifier
and cross-signing master verification key. However, the MAC
that has been calculated includes the device identity key of
the device it maps to. It can only pass the MAC verification
as a device, not as a cross-signing master key.

When verifying the MACs in the message, SAS.VerifyMAC
(Fig. 4) first checks if the string is a device identifier, then
checks if it maps to a cross-signing identity. The entry for
mpk’ passes verification as if it were a request for a device to
be verified.

When fulfilling the signing request, SAS.SignDevice
(Fig. 4) first checks if the string maps to a cross-signing
identity, then checks whether it is a device identifier. If the
processing device has an entry for mpk’ in its cross-signing

directory, it will sign the user and cross-signing identity then
upload it to the homeserver.

B. Attack

Consider a setting with two users: Alice A and Bob B, each
with device D41 and Dp; respectively. Additionally, they
are both registered to a malicious homeserver, whose aim is
to compromise their out-of-band verification with the SAS
protocol. The attack proceeds as follows:

1) When Alice A registers their account with the homeserver,
the homeserver generates a parallel cross-signing identity with
verification keys (mpk’,, spk’,, upk’,).

2) When Alice A logs in for the first time, the homeserver
sets the device identifier D 4 1 < mpk/,.

3) When Bob B logs in for the first time, the homeserver sets
Dp,1 as normal.

4) Alice and Bob each setup their own cross-signing
identities with verification keys (mpky, spks,upk,) and
(mpkpg, spkg, upkp) respectively. They upload these to the
homeserver.

5) The homeserver proceeds to present two versions of the
cross-signing state:

a) When Alice requests their own cross-signing informa-
tion, they are presented with the version they uploaded
(mpk 4, spk 5, upk »).

b) When Bob requests Alice’s cross-signing information, they
are presented with the version generated by the malicious
homeserver (mpk'y, spk’,, upk’,).

6) Alice and Bob perform an out-of-band verification
using the SAS protocol. At the end, they exchange
m.key.verification.mac messages containing their
cryptographic identity (for signing). Figure 10 shows the
structure of the message Alice sends. Dp | processes it as
follows:

a) SAS.VerifyMAC interprets the entry for mpk’, as a request
for device verification. It fetches the expected device
identity key dpk, ;, then calculates a matching MAC.
The device identity key pulled from the homeserver is
legitimate, and matches the one used by Alice’s device to
generate the MAC. Thus, the message passes verification.

b) SAS.SignDevice interprets the entry for mpk’, as a re-
quest for cross-signing verification. This is because the
homeserver has led Bob’s client to believe that Alice’s
cross-signing identity is mpk’,.

7) Bob cross-signs the homeserver controlled identity for

Alice, and uploads the signature to the homeserver to distribute

to their other devices.

We implemented this attack and report that it succeeds
in practice. We expect that this attack can be performed
in parallel against Bob, such that Alice signs a homeserver
controlled cross-signing identity for Bob (mpkp, spk’, upk’y).
From this point onwards, the homeserver can generate their
own device identities. These device identities can create Olm
connections with Alice as if they were a verified device of

Bob, and vice versa. This results in a compromise of all Olm
sessions between the two users (for which compromise of
Megolm sessions follows).

C. Limitations

This attack exploits a specific issue with cross-signing between
users’ devices and does not work when a user is verifying two
of their own devices. This means that a malicious homeserver
cannot compromise Olm connections between devices of the
same user.

D. Remediation

Alongside public disclosure, the Matrix developers will ensure
that master cross-signing keys and device identifiers are not
confused for one another. To do this, they plan to consistently
process identifiers, checking whether they are key or device
identifier in the same order throughout the codebase. We
recommend that this order is formalised in the Matrix specifi-
cation (with the security implications of a mistake explained).

The attack is made possible due to a lack of domain
separation between device identifiers and cross-signing keys.
In the long-term, the Matrix developers plan to separate the
format for device identifiers and Ed25519 keys.

Additionally, we recommend that the use of device identi-
fiersinm.key.verification.mac messages during self-
verification is not necessary. Replacing these with the device’s
identity key would serve the same purpose, and reduce the
need to include homeserver-controlled information during the
processing of these messages.

V. Semi-trusted Impersonation against Megolm
Authentication

In this section we describe an attack that allows a malicious
device and homeserver to impersonate other (target) devices.
The malicious device and the target devices may or may
not belong to the same user. Whilst this attack causes a
warning to be shown next to the message, messages sent using
legitimately forwarded room keys display the same warning,
thus this attack achieves the same level of trust as legitimately
forwarded room keys. In Section VI-B we will build on
this attack to achieve an impersonation that produces trusted
messages.

A. Vulnerability

Clients using matrix-js—sdk will accept valid encrypted
m. forwarded_room_key messages regardless of whether
they requested the keys.!* Further, whilst the key sharing

4MegolmDecryption.onRoomKeyEvent in matrix-js-sdk
(commit #4721aal) does not check whether a matching room key request

has been made before processing a m. forwarded_room_key message.

https://github.com/matrix-org/matrix-js-sdk/blob/4721aa1d241a46601601259ec7ca6db9ff1bb5fb/src/crypto/algorithms/megolm.ts#L1428

restrictions mentioned in Section II-H are implemented on
the sharing side, they are not implemented on the receiving
side of the protocol: clients will accept forwarded room keys
from any device as long as the message is encrypted.”> This
enables a malicious device to push Megolm sessions to other
devices (potentially even overwriting a legitimate session with
an illegitimate one).

Unlike sessions received viam. room_key messages, those
received via m.forwarded_room_key messages do not
have a cryptographic link between the session owner and
the session. Instead, they have a cryptographic link be-
tween the forwarding party and the session. To track the
trust level a device has in a particular Megolm session,
the Key Request protocol associates the session with a
list of Olm identity keys that have forwarded it (through
the forwarding_curve25519_key_chain field of the
message, which contains a list of Curve25519 keys through
which this session was forwarded). Whenever a device receives
a Megolm session through a m.forwarded_room_key
message, they append the Olm identity key and long-term
fingerprint key associated with it to its forwarding key chain.
This allows for a key to be forwarded from, for example,
Alice’s first phone to a second one, and from the latter to a
third, and so on. Provided the initial device trusts every other
device in the list to honestly forward sessions, they can trust
the Megolm session.

No such check is implemented.®® When a message
is decrypted by a Megolm session with a non-empty
forwarding_curve25519_key_chain list, it is dis-
played with the same warning message regardless of which
device forwarded it.

B. Attack

Consider a setting with three users: Alice A, Bob B and
Claire C. Each user has a single logged-in device: D1, Dp 1,
and Dc,;. Let G = room_id identify a room consisting of
Alice and Bob’s devices. To impersonate Bob Dp ;1 to Alice
Dy, in G, Claire D¢,y can:

1) Generate a new Megolm session inbound/outbound pair
(i, R, gpk), (i, R, gsk, gpk), for which D¢ ; keeps the outbound
session.

2) Construct an m.forwarded_room_key event (Fig-
ure 11a) to share the Megolm session, and set sender_key
and sender_claimed_ed25519_key to the Olm identity
key and long-term fingerprint key of Dp ;| respectively.
3) Setup an Olm channel between Claire
and Alice Dy4,. Use the channel to encrypt
m.forwarded_room_key message.

D¢,
the

ISMgngnggryptiQn,QnRQQmKQyEvgnt in matrix-js-sdk
(commit #4721aal) uses event . senderKey to ensure the message was
encrypted. However, it will accept m. forwarded_room_key messages
from any user or device.

16See getEventEncryptionInfo in
(#4721aal).

matrix-js-sdk

{

"type": "m.forwarded_room_key",
"content": {
"algorithm": "m.megolm.vl.aes-sha2",
"room_1id": room_id,
"session_id": gpk,
"session_key": ver [| 1 || R || gpk,
"chain_index": 1,
"sender_key": bob_ipk,
"sender_claimed_ed25519_key": bob_dpk,
"forwarding_curve25519_key_chain": [],

b}

(a) Plaintext message.
{
"messages": {
"<alice_user_id>": {
"<alice_device_1id>": {
"algorithm":
"m.olm.v1l.curve25519-aes-sha2",
"sender_key": claire_ipk,
"ciphertext": {
"<alice_ipk>": {
"type": olm_message_type,
"body": ciphertext
FrEhhY

(b) To-device message wrapper.

Fig. 11: This message allows Claire’s device D4 ; to imper-
sonate Bob’s device Dp_; to Alice’s device D4 ;. It works by
placing an inbound Megolm session into Alice’s device that
claims to be from Bob. The ciphertext value in Figure 11b
is the result of encrypting the plaintext in Figure 11a using an
Olm channel between Claire and Alice. The current imple-
mentation does not distinguish between messages maliciously
constructed in this way and keys that have been legitimately
shared.

4) The ciphertext is wrapped with metadata and formatted as
a to-device message (Figure 11h), to be sent to Alice’s device
Da,.

We give the attack flow in Fig. 12. When Alice’s Dy ;
device receives this message, it will accept the forwarded key
and store it associated with the Olm identity key ipkg ; and
long-term fingerprint key dpkg ; of D p 1. Additionally, it will
add the Olm identity key of D¢ to the forwarded key chain
associated with this session.

At the end of this process, Claire’s device D¢, knows the
gsk of a Megolm session, i.e. knows the outbound session
secrets for an inbound session, that Alice’s device D4
believes is owned by Bob’s device Dp ;. Using this session,
Dc,1 may send messages to D 4,1 that will be displayed in the
user interface as having come from Dgp ;.

When determining the user that sent a message, each device
starts by looking at the sender field of the ciphertext wrap-
per. The device then ensures that the cryptographic identity
used to send the message matches the value in this field. The
sender field is set by the homeserver when a device uploads
a new message, using the user identifier associated with that
device. This attack, therefore, requires a colluding homeserver
to forge the sender field of Megolm messages.

The messages will be semi-trusted, displayed with a warn-

https://github.com/matrix-org/matrix-js-sdk/blob/4721aa1d241a46601601259ec7ca6db9ff1bb5fb/src/crypto/algorithms/megolm.ts#L1449
https://github.com/matrix-org/matrix-js-sdk/blob/4721aa1d241a46601601259ec7ca6db9ff1bb5fb/src/crypto/index.ts#L2485

Claire
Olm.KGen(1", ne, ny)

3, (iske.y. ipke
eskc.1,epkc 1, - ..)

Alice Homeserver
OIm.KGen(1", ne,ny)

5 (iska,1,ipka s

eskai,epkyys--.) (ipka s epkA,l)\/(ika,l’eka,l)

I<ika,l’ epkcy) | (ipky epkA,l)\

Megolm.Init(1) 3
(Ggska Ggpk’ U'mg)§
OIm.Enc(-- - , mgp)

— (7olms €0);

S2DWrapOlm(
A, Daj,cee
£=0, ¢9)

< - g

(—
<
(—
Fig. 12: The impersonation attack described in

Section V-B. The function S2DWrapOlm wraps an
Olm encrypted ciphertext with the appropriate metadata
to be sent as a to-device message. We let mg be
m.forwarded_room_key(G,gpk,ver,i,R,ipkB’l,dpkB’l).

ing message. However, as mentioned above, this message is
also displayed alongside messages decrypted with legitimately
forwarded Megolm sessions. We implemented this attack and
report that is succeeds in practice.

C. Remediation

At the time of public disclosure, clients will only process
m.forwarded_room_key messages in response to previ-
ously issued requests. Since clients correctly request keys from
trusted devices only, this aims to ensure that they only accept
them from trusted devices, as well.

In the long-term, the Matrix developers plan to discontinue
the use of m. forwarded_room_key messages, replacing
all instances with m.room_key. This will ensure that the
inbound Megolm session being shared is always bound to gsk
with a signature.

Further, clients will further restrict the devices they will
accept forwarded room keys from to only those forwarded
by verified devices of the same user. This is an additional
restriction over the current policy, whereby the owner of the
session may also share it regardless of their verification status.

VI. Trusted Impersonation and Confidentiality
Breaks against Megolm

In this section we describe two attacks that, together, compro-
mise the authenticity and confidentiality of Megolm channels.

"Matrix optionally allows sharing room history with new members. This
is implemented by sharing previous inbound Megolm sessions with the new
member. The fix described will not apply to such messages, though the
resulting sessions will be marked as untrusted in the code and user interface.
The Matrix developers are working on a long-term countermeasure with
stronger guarantees.

In Section L, we described how pairwise Olm channels are
used by the Megolm and Key Request protocols, as well as the
SSSS modules’s secret sharing functionality. These protocols
maintain their security by relying on the Olm protocol and its
connection to users’ cross-signing identities. However, a lack
of verification in the implementation allows such messages to
also be sent over Megolm. The following two attacks send
protocol messages intended to be sent over Olm channels,
over semi-trusted Megolm sessions instead (using the attack
described in Section V). In doing so, the attacker is able to
impersonate a trusted device in order to place secrets on the
target device.

A. Vulnerability

1) Protocol confusion: The Matrix and Megolm specifi-
cations requires that m.room_key and m.secret.send
messages are sent over encrypted Olm channels. Whilst
the specifications do not include this requirement for
m.forwarded_room_key messages, we believe this is the
intended behaviour. These messages are used for sending key
material in the Megolm, Key Request, SSSS secret sharing
protocols (respectively). However, whilst the handler for these
incoming messages ensures they have been encrypted, it does
not explicitly check which algorithm they were encrypted with.
It is therefore possible to encrypt m.room_key messages
using Megolm rather than Olm, provided they are distributed
via to-device messaging (cf. Fig. 13).

2) Inheriting sender identity: When Megolm messages are
decrypted, they inherit the sender identity associated with the
Megolm session used for decryption. Similarly, when Megolm
sessions are received through an m.room_key message,
they inherit the sender identity of the encrypted channel they
were sent over. In the expected case, this will be the sender
identity of the Olm channel it was sent over. When sending
m.room_key messages over a Megolm session, it will inherit
the sender identity that the Megolm session inherited (inherited
from the encrypted channel where it was sent).

B. Trusted Impersonation Attack against Megolm
Authentication

We describe an attack that allows a malicious device and
colluding homeserver to impersonate any device. The attacker
uses the forwarded Megolm session from the attack in Sec-
tion ¥ to deliver a second Megolm session to the target device
that is indistinguishable from a legitimate session (as sent via
an m.room_key message). No warning is shown alongside
messages encrypted with the second Megolm session, i.e. its
messages are trusted.

The inheritance strategy described above (Section VI-A2)
maintains the cryptographic link between the Olm channel first
used to send a Megolm session, and any subsequent Megolm
sessions sent over it.

{"messages": {
"<receiver_user_id>": {
"<receiver_device_1id>": {

"algorithm": "m.megolm.vl.aes—-sha2",
"sender_key": sender_ipk, "session_id": gpk,
"room_id": room_id, "ciphertext": ciphertext}}}

(a) Message sent by the device.

Fig.

{ "type" .

"m.room.encrypted",

"sender": sender_user_id

"content": {

"algorithm": "m.megolm.vl.aes-sha2",
"sender_key": sender_ipk, "session_id": gpk,
"room_id": room_id, "ciphertext": ciphertext}}

(b) Message as forwarded by homeserver.

13: Figure 13a shows the format of a Megolm encrypted to-device message as it is sent to the homeserver (the message

type, m. room.encrypted, is encoded in the URL). The homeserver will split up to-device messages, collate them by device,
then redistribute them as a list of messages in the format seen in Figure 13bh. Synapse does not preserve the room_id field
of messages when converting between the two formats shown here, and thus requires a colluding homeserver to enable the
protocol confusion. The sender field is added by the homeserver and, similarly, requires collusion from the homeserver to
set it to the attacker’s desired value. sender_key and session_id are used by the receiving device to locate the Megolm

session with which to decrypt the ciphertext.

However, m. forwarded_room_key messages allow at-
tackers to insert Megolm sessions with an associated sender
identity that does not have this (or any) cryptographic link.
If the adversary then sends an m.room_key message over
the forwarded Megolm session, this latest session inherits the
presumed sender identity, regardless of whether that sender
identity has been cryptographically verified or not. Thus, such
a message ‘“upgrades” the presumed validation of the key
material from unknown to verified.

The attack starts after the attack in Section V=B has con-
cluded, where Claire’s device D¢ x has forwarded the Megolm
session Sgpr to Alice’s device D4 ; in order to impersonate
Bob’s device Dp ;. Claire’s device D¢ i proceeds as follows:

1) Generate a new Megolm session pair, G;pk, Gésk, for which
Dc i keeps the outbound session: &' .

2) Construct an m.room_key message (Fig. 15a) to share
the inbound session S;Wk.

3) Encrypt the m.room_key message using the previ-
ously constructed outbound Megolm session, Sgg, from Sec-
tion V=R.

4) Construct a Megolm encrypted, to-device message wrapper
(Fig. 15b) to distribute the ciphertext from the previous step
to Alice’s device D4 ;.

We illustrate this attack in Fig. 14. When Alice’s device
D4, receives the second Megolm session Gépk, the new
session will be saved as if it were sent via an Olm channel

with Bob’s device D p; sender identity.

Claire’s device D¢ now has control over gsk’ of an
outbound Megolm session that Alice’s device D4 ; believes
is owned by Bob’s device Dp ;. In contrast with the attack
in Section V=B, there is no evidence presented to the receiver
that this Megolm session was forwarded.

D¢ may send messages to D4, using this session that
will be displayed in the user interface as coming from Dp ;
(without any warnings in the user interface). As before,
this requires collaboration with the homeserver to forge the
sender field of the Megolm messages. We implemented this
attack and report that it succeeds in practice.

Alice Homeserver Claire
(G;xk’ G;pk, Tg) < Megolm.Init(1")
my «— m.room_key(G, gpk,ver || G;Zpk | g i)
(i, R, gsk, gpk), c1 < Megolm.Encrypt(S,, m1)
¢} « s2DWrapMegolm(A, D, ipkp
< grk’,Dp. j,c1,G)
’ (—
h
Fig. 14: The impersonation attack described Section VI-B.
This diagram continues on from the sequence diagram
in Fig. 12, which itself describes the attack in Section V-B.
The function m.room_key generates a message of the
same name (Fig. 15a describes its structure). The function
S2DWrapMegolm wraps a Megolm encrypted ciphertext with
the appropriate metadata to be sent as a to-device message
(Fig. 15b describes its structure).

C. Adversary Controlled Megolm Backup Key

We now describe an attack whereby a malicious homeserver
is able to set the secret key used by target devices when
encrypting inbound Megolm sessions for backup on the home-
server. This enables the homeserver to decrypt the backups,
compromising the confidentiality of messages sent in those
sessions.

In brief, the attack proceeds as follows. When newly verified
devices request a copy of the Megolm backup key through
SSSS secret sharing, the homeserver impersonates a trusted
device (using the Olm/Megolm protocol confusion) and re-
sponds with an attacker-controlled backup key. From this point
onwards, the target device will backup their inbound Megolm
sessions to the homeserver, encrypted with a homeserver
controlled key. Thus, this attack extends the authentication
attack of Section V=B to additionally break confidentiality.

It is expected that m.secret.send messages are en-
crypted with the Olm protocol; however, as in Section VI=B,
it is possible to send a to-device m.secret . send message
encrypted with Megolm. When the receiving client decrypts
the message, it will inherit the Olm identity key ipk associated

{"type": "m.room_key",

"room_1id": room_id,

"content": {
"algorithm": "m.megolm.vl.aes—-sha2",
"room_id": room_id, "session_id": gpk',
"session_key":
ver || 1i' R'" || gpk' [\
sign(gsk', ver || i' || R' || gpk'),
"chain_index": im}}

(a) Plaintext message.

{"messages": {

"<alice_user_id>": {
"<alice_device_id>": {
"algorithm": "m.megolm.vl.aes-sha2",
"sender_key": bob_ipk,
"session_id": gpk,
"device_id": bob_device_id,
"ciphertext": ciphertext,
"room_1id": room_id}}}}}

(b) To-device message wrapper.

Fig. 15: This message allows Claire D4 ; to impersonate Bob Dp ; to Alice D4 ;. It works by placing a Megolm session into
Alices device using an existing Megolm session that is already associated with Bobs sender identity. The plaintext in Figure 15a
is encrypted using the forwarded Megolms session from the previous attack Ggp. In Figure 13b, the session identifier is gpk
to match the session used for encryption, not the session we are sending. This allows the second Megolm session to be sent
using an m.room_key message, without being marked as a forwarded session.

with the Megolm session.'

In this attack, the adversary generates and sends a Megolm
session using a m.forwarded_room_key message with
the claimed Olm device identity of a verified device belonging
to the same user as the target device. The adversary then uses
this Megolm session to send am. secret . send with secrets
they control.

Consider a setting with a homeserver H that controls a
colluding user account Bob B and device Dp . The target
user Alice A, has two devices Da1 and Dyo. Dy, is the
first of Alice’s devices, and thus possesses both the cross-
signing secrets (mska, uska, sska) and a key for server-side
Megolm backups. Alice’s second device, D4, is the result
of a recent login from a new client. Whilst it has received
a copy of Alice’s public cross-signing identity through the
homeserver, it does not yet have access to the cross-signing
secrets. The attack proceeds as follows:

1) H generates a symmetric key kg «s {0, 1}2°°. It constructs
a backup configuration signifying the use of symmetric server-
side key backups'® with key ky (the key is not signed). The
homeserver will present this backup configuration to Alice’s
second device, D4 .

2) Due to the lack of signature, D4 will not trust this key
and will not enable backups.

3) Alice completes out-of-band verification between D 4,1 and
Dap.

4) Dso sends an m.secret.request message to Dy g
requesting the key for server-side Megolm backups.

5) H does not distribute this request message to D4 1.

6) H and Dp perform the attack in Section V-B against
D 4,5, giving them control over a Megolm session that D 4 »
believes originally came from D4 ;.

7) H uses this Megolm session to respond to Da»’s re-
quest, sending an m. secret . send message containing the
attacker-controlled k.

BgetEventEncryptionInfo in matrix-js—-sdk (commit

#4721aal) uses event.senderKey both to ensure the message was
encrypted and to check the identity of the sender.

19We tested this attack against the symmetric backup scheme, but we expect
it to also work against the asymmetric scheme.

8) D4 receives and decrypts the message, storing kg as the
secret key for server-side Megolm backups.

9) D 4 will now trust the homeserver’s backup configuration,
since Da’s private Megolm backup key matches the key
identifier in the configuration.

10) D4 will enable server-side Megolm backups, uploading
inbound Megolm sessions to the homeserver H (encrypted
using the homeserver-controlled key kp).

D. Remediation

At the time of public disclosure, clients will ensure that
encrypted to-device messages use the Olm protocol only. Such
a fix should prevent the exploited protocol confusion.

However, we remark that this protocol confusion is aided
by the overall layout of the Matrix SDK where cryptographic
functionality is spread across different sub-libraries rather than
being contained in a small, easily auditable core.

In particular, Element currently implements verification of
message authentication not at decryption time but at display
time. However, for messages that are never displayed but
silently affect the state of the client this means that no
verification of the sender is ever triggered. This makes it
impossible for clients to establish the level of trust they have
in different parts of their state.

VII. IND-CCA Attack on Backups

Here we break the formal IND-CCA security of symmetric
Megolm Key Backups and the Secure Secret Storage and
Sharing protocol.

A. Vulnerability

Matrix uses an encrypt-then-MAC encryption scheme compos-
ing AES-CTR with HMAC-SHA-256. Recall that AES-CTR
proceeds by encrypting a series of blocks iv,ive® 1,iv®?2,...
and XORing the result onto the message blocks m; to produce
the ciphertext blocks ¢;. The full ciphertext is iv||co|lcy]] - . ..

https://github.com/matrix-org/matrix-js-sdk/blob/4721aa1d241a46601601259ec7ca6db9ff1bb5fb/src/crypto/index.ts#L2473

However, the iv is not covered by the authentication tag

produced by HMAC-SHA-256.%

B. Attack

The IND-CCA attack proceeds as follows: Let c¢* be some
challenge ciphertext for either some message mg or m; of
length 128 bits:

cx = iv|| AES(ko, iv) ® mp|| HMAC (k1, AES(ko,iv) & myp).

The adversary requests an encryption of zero from the encryp-
tion oracle and receives

¢ = iv'|| AES(ko,iv") @ 0| HMAC (k1, AES ko, iv") @ 0)
for some iv’. Finally, the adversary requests a decryption of
c* = iv|| AES(ko,iv") @ 0| HMAC (k, AES(ko,iv") @ 0)

from the decryption oracle. Note that the MAC verifies cor-
rectly, and so the adversary will receive ‘z :== AES(ko,iv') @
AES(kg,iv) @ 0. Given that the adversary already knows
AES(kg,iv’) it can now recover ‘AES(kg,iv) = t @
AES(ko,iv')* and thus decrypt the challenge cx.

C. Limitations

In principle, in the Matrix setting, forwarding keys to the
target and observing the resulting backups on the homeserver
provides an encryption oracle. Similarly, modifying a backup
on the homeserver then requesting the resulting key provides
a decryption oracle.

However, in practice, this attack is not exploitable as far as
we can see for two reasons. First, the use of per-session keys
means the scope of the decryption oracle is limited to the
per-session key of sessions the attacker already has access to.
Second, any modified ciphertexts will likely be invalid JSSON
structures and fail to parse correctly (preventing the decryption
oracle from sharing the plaintext with the adversary).

D. Remediation

The Matrix developers plan to include the iv alongside the
ciphertext when calculating the MAC. Similarly, clients will
include the iv of encrypted attachments inside Megolm cipher-
texts alongside their SHA-256 and encryption key. Since this
issue is not currently practically exploitable in Matrix, these
fixes will not be made available at the time of disclosure.

20A similar issue exists for attachments which are shared out of band in
encrypted form [1, #sending-encrypted-attachments]. Here the hash shared
over Megolm (which takes the role of the MAC) does not include the iv. Since
the iv itself is also shared over Megolm and thus implicitly authenticated, we
do not see a way to exploit this behaviour.

VIII. Discussion

We presented six attacks that together invalidated the funda-
mental security promises made by Matrix’ end-to-end encryp-
tion against a malicious server. In particular, the version of
Matrix as implemented in Element and analysed here neither
provided confidentiality nor authentication against such an
attacker.

On the one hand, some of our attacks highlight a rich
attack surface by “chaining” different attacks to achieve their
goals. In particular, we compose (1) the “weak” authentica-
tion break in Section ¥ which exploits missing verifications,
(2) a stronger authentication break in Section VI-B which
exploits a protocol confusion aided by the design choice to
check cryptographic properties at display rather than receiving
time, and (3) a MITM attack that breaks confidentiality by
convincing a target to use an adversary controlled key as
backup in Section VI=C. On the other hand, our attacks
are well distributed across the different parts of the overall
cryptographic core of the Matrix protocol and implementation.
In particular, we show (1) that Matrix offers no confidentiality
guarantees against a malicious homeserver due to a design
flaw allowing the homeserver to trivially add new users and
devices to a room in Section III, (2) that an identifier confusion
in a separate protocol allows to break authentication and
thus confidentiality even for the lowest level Olm channels
in Section IV, and (3) that the key backup scheme in yet
another subsystem does not achieve formal IND-CCA security
in Section VII.

Besides the observed implementation and specification er-
rors, these vulnerabilities highlight a lack of a unified and
formal approach to security guarantees in Matrix. Rather, the
specification and implementations seem to have grown “organ-
ically” with new sub-protocols adding new functionalities and
thus inadvertently subverting the security guarantees of the
core protocol. This suggests that, besides fixing the specific
vulnerabilities reported here, Matrix/Megolm will need to
receive a formal security analysis to establish confidence in
the design.

We finish by reiterating a point already made in the intro-
duction, namely that our attacks are against a setting where
Matrix aims to provide the strongest guarantees, i.e. where
every device and user have performed out-of-band verification.
If this condition is not satisfied, even for one device or user,
then “all bets are off” and e.g. impersonation becomes trivial.
While Element already supports the option of refusing to send
messages to unverified devices it does not reject messages
from such devices. Thus, unless the client-side option is
provided to reject all communication from unverified devices
or rooms with such devices within them, Matrix will not
provide a secure chat environment regardless of cryptographic
guarantees provided for verified devices.

Acknowledgements

The work of Jones was supported by the EPSRC and the UK

Government as part of the Centre for Doctoral Training in
Cyber Security for the Everyday at Royal Holloway, University
of London (EP/S021817/1). The work of Albrecht was done
while at Royal Holloway, University of London.

References

[1] The Matrix.org Foundation, “Client-Server API (unstable),” May 2021.
[Online]. Available: https://spec.matrix.org/unstable/client-server-api/

[2] ——, “Olm: A cryptographic ratchet.” [Online]. Available: https:
//gitlab.matrix.org/matrix-org/olm/-/raw/master/docs/olm.md
[3] ——, “Megolm group ratchet.” [Online]. Available: https://gitlab.matrix.

org/matrix-org/olm/-/raw/master/docs/megolm.md
[4] M. Marlinspike, “Simplifying OTR deniability.” Jul. 2013. [Online].
Available: https://signal.org/blog/simplifying-otr-deniability/

[5] ——, “The X3DH key agreement protocol,” Nov. 2016, revision 1.

[6] ——, “The Double Ratchet algorithm,” Nov. 2016. [Online]. Available:

https://signal.org/docs/specifications/doubleratchet/
[7] J. Meredith and A. Balducci, “Matrix Olm cryptographic review,” NCC
Group, Tech. Rep., Nov. 2016, version 2.0.

[8] D.J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang, “High-
speed high-security signatures,” Journal of Cryptographic Engineering,
vol. 2, no. 2, pp. 77-89, Sep. 2012.

[9]1 D. Wong, Real-world Cryptography. Manning Publications., 2021.
[10] M. Hodgson, “Independent public audit of Vodozemac, a native rust
reference implementation of Matrix end-to-end encryption.” [Online].
Available: https://matrix.org/blog/2022/05/16/independent-public-audit-
of-vodozemac-a-native-rust-reference-implementation- of-matrix-end-
to-end-encryption
Anna Kaplan, Ann-Christine
Winkelmann, and Rai Yang, ‘“Vodozemac Security Au-
dit Report,” Least Authority, Tech. Rep., Mar. 2022.
[Online]. Available: https://matrix.org/media/Least%20Authority%20-
%20Matrix%20vodozemac%20Final %20Audit%20Report.pdf
T. Frosch, C. Mainka, C. Bader, F. Bergsma, J. Schwenk, and T. Holz,
“How secure is TextSecure?” in IEEE European Symposium on Security
and Privacy, EuroS&P 2016, 2016, pp. 457-472.

K. Cohn-Gordon, C. Cremers, B. Dowling, L. Garratt, and D. Stebila,
“A formal security analysis of the signal messaging protocol,” Journal
of Cryptology, vol. 33, no. 4, pp. 1914-1983, Oct. 2020.

[14] J. Alwen, S. Coretti, and Y. Dodis, “The double ratchet: Security notions,
proofs, and modularization for the Signal protocol,” in Advances in
Cryptology — EUROCRYPT 2019, Part I, ser. Lecture Notes in Computer
Science, Y. Ishai and V. Rijmen, Eds., vol. 11476. Darmstadt, Germany:
Springer, Heidelberg, Germany, May 19-23, 2019, pp. 129-158.

M. Marlinspike, “Private group messaging,” May 2014. [Online].
Available: https://signal.org/blog/private-groups/

P. Rosler, C. Mainka, and J. Schwenk, “More is less: On the
end-to-end security of group chats in signal, whatsapp, and threema,”
in 2018 IEEE European Symposium on Security and Privacy,
EuroS&P 2018. 1EEE, 2018, pp. 415-429. [Online]. Available:
https://doi.org/10.1109/EuroSP.2018.00036

The Matrix.org Foundation, “A new hope: matrix-rust-sdk.” [Online].
Available: https://matrix.org/blog/2021/12/22/the-mega-matrix-holiday-
special-202 1#a-new-hope- matrix-rust-sdk

M. Hodgson, “This week in Matrix 2022-09-30.” [Online]. Available:
https://matrix.org/blog/2022/09/30/this- week-in- matrix-2022-09-30
The Matrix.org Foundation, “Clients Matrix.” [Online]. Available:
https://matrix.org/clients-matrix/

“Secure hash standard,” National Institute of Standards and Technology,
NIST FIPS PUB 180-2, U.S. Department of Commerce, Aug. 2002.
H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-hashing for
message authentication,” IETF Internet Request for Comments 2104,
Feb. 1997.

[22] ——, “RFC 2104: HMAC: keyed-hashing for message authentication,”
1997. [Online]. Available: https://doi.org/10.17487/REC2104

H. Krawczyk, “Cryptographic extraction and key derivation: The HKDF
scheme,” in Advances in Cryptology — CRYPTO 2010, ser. Lecture Notes
in Computer Science, T. Rabin, Ed., vol. 6223. Santa Barbara, CA,
USA: Springer, Heidelberg, Germany, Aug. 15-19, 2010, pp. 631-648.

[11] Kycler, Denis Kolegov, Jan

[12]

[13]

[15]

[16]

[17]

[18]
[19]
[20]

[21]

[23]

[24] H. Krawczyk and P. Eronen, “RFC 5869: HMAC-based Extract-and-
Expand Key Derivation Function (HKDF),” 2010. [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc5869
“Advanced Encryption Standard (AES),” National Institute of Standards
and Technology (NIST), FIPS PUB 197, U.S. Department of Commerce,
Nov. 2001.
M. Dworkin, “Recommendation for Block Cipher Modes of Operation:
Methods and Techniques,” National Institute of Standards and
Technology, Tech. Rep. NIST Special Publication (SP) 800-38A,
Dec. 2001. [Online]. Available: https://csrc.nist.gov/publications/detail/
sp/800-38a/final
R. Housley, “RFC 5652: Cryptographic Message Syntax (CMS),” Sep.
2009. [Online]. Available: https://datatracker.ietf.org/doc/html/rfc5652
[28] The Matrix.org Foundation, “MSC2732: Olm fallback keys,” Jun.
2021. [Online]. Available: https:/github.com/matrix-org/matrix-spec-

proposals/pull/2732
[29] ——, “Implementing more advanced e2ee features, such as cross-

signing,” 2021. [Online]. Available: https:/matrix.org/docs/guides/
implementing-more-advanced-e-2-ee-features-such-as-cross-signing

P. Zimmermann, E. A. Johnston, and J. Callas, “RTP: Media Path Key
Agreement for Unicast Secure RTP,” Apr. 2011. [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc6189

D. J. Bernstein, “Curve25519: New Diffie-Hellman speed records,” in
PKC 2006: 9th International Conference on Theory and Practice of
Public Key Cryptography, ser. Lecture Notes in Computer Science,
M. Yung, Y. Dodis, A. Kiayias, and T. Malkin, Eds., vol. 3958. New
York, NY, USA: Springer, Heidelberg, Germany, Apr. 24-26, 2006, pp.
207-228.

The Matrix.org Foundation, “MSC3270: Symmetric megolm backup,”
Jul. 2021. [Online]. Available: https://github.com/matrix-org/matrix-
spec-proposals/pull/3270

M. Chase, T. Perrin, and G. Zaverucha, “The signal private group system
and anonymous credentials supporting efficient verifiable encryption,” in
ACM CCS 2020: 27th Conference on Computer and Communications
Security, J. Ligatti, X. Ou, J. Katz, and G. Vigna, Eds. Virtual Event,
USA: ACM Press, Nov. 9-13, 2020, pp. 1445-1459.

[25]

[26]

[27]

[30]

[31]

[32]

[33]

Appendix

A. Attacks enabled by the Asymmetric Megolm
Backup scheme

Since this scheme does not authenticate the party that creates
the backups, it provides an alternative means to perform a
semi-trusted impersonation attack. In this attack, a malicious
homeserver can generate Megolm sessions under their control,
encrypt them for the recovery key and share them with a target
user as backups [32].

For this reason, sessions acquired through asymmetric
server-side backups are marked as untrusted internally, and
messages decrypted using such sessions are accompanied with
a warning. This issue is inherent to the design of the scheme
and is a known issue to the protocol designers [32], motivating
the development of the symmetric scheme described in Sec-
tion I-12.

Nonetheless, we note that this attack provides an alternative
first step in performing the attacks described in Section VI.

https://spec.matrix.org/unstable/client-server-api/
https://gitlab.matrix.org/matrix-org/olm/-/raw/master/docs/olm.md
https://gitlab.matrix.org/matrix-org/olm/-/raw/master/docs/olm.md
https://gitlab.matrix.org/matrix-org/olm/-/raw/master/docs/megolm.md
https://gitlab.matrix.org/matrix-org/olm/-/raw/master/docs/megolm.md
https://signal.org/blog/simplifying-otr-deniability/
https://signal.org/docs/specifications/doubleratchet/
https://matrix.org/blog/2022/05/16/independent-public-audit-of-vodozemac-a-native-rust-reference-implementation-of-matrix-end-to-end-encryption
https://matrix.org/blog/2022/05/16/independent-public-audit-of-vodozemac-a-native-rust-reference-implementation-of-matrix-end-to-end-encryption
https://matrix.org/blog/2022/05/16/independent-public-audit-of-vodozemac-a-native-rust-reference-implementation-of-matrix-end-to-end-encryption
https://matrix.org/media/Least%20Authority%20-%20Matrix%20vodozemac%20Final%20Audit%20Report.pdf
https://matrix.org/media/Least%20Authority%20-%20Matrix%20vodozemac%20Final%20Audit%20Report.pdf
https://signal.org/blog/private-groups/
https://doi.org/10.1109/EuroSP.2018.00036
https://matrix.org/blog/2021/12/22/the-mega-matrix-holiday-special-2021#a-new-hope-matrix-rust-sdk
https://matrix.org/blog/2021/12/22/the-mega-matrix-holiday-special-2021#a-new-hope-matrix-rust-sdk
https://matrix.org/blog/2022/09/30/this-week-in-matrix-2022-09-30
https://matrix.org/clients-matrix/
https://doi.org/10.17487/RFC2104
https://datatracker.ietf.org/doc/html/rfc5869
https://csrc.nist.gov/publications/detail/sp/800-38a/final
https://csrc.nist.gov/publications/detail/sp/800-38a/final
https://datatracker.ietf.org/doc/html/rfc5652
https://github.com/matrix-org/matrix-spec-proposals/pull/2732
https://github.com/matrix-org/matrix-spec-proposals/pull/2732
https://matrix.org/docs/guides/implementing-more-advanced-e-2-ee-features-such-as-cross-signing
https://matrix.org/docs/guides/implementing-more-advanced-e-2-ee-features-such-as-cross-signing
https://datatracker.ietf.org/doc/html/rfc6189
https://github.com/matrix-org/matrix-spec-proposals/pull/3270
https://github.com/matrix-org/matrix-spec-proposals/pull/3270

	Introduction
	Matrix Overview
	Prior Work
	Contributions
	Disclosure
	Scope

	Preliminaries
	Algorithms
	Message Types
	Users, Identities and Cross-Signing
	Out-of-band Verification
	Secure Secret Storage and Sharing
	Megolm Sessions
	Distributing Megolm Sessions
	Key Request Protocol
	Server-side Megolm Backups

	Homeserver Control of Room Membership
	Room Members
	Device List
	Remediation

	Key/Device Identifier Confusion in SAS
	Vulnerability
	Attack
	Limitations
	Remediation

	Semi-trusted Impersonation against Megolm Authentication
	Vulnerability
	Attack
	Remediation

	Trusted Impersonation and Confidentiality Breaks against Megolm
	Vulnerability
	Trusted Impersonation Attack against Megolm Authentication
	Adversary Controlled Megolm Backup Key
	Remediation

	IND-CCA Attack on Backups
	Vulnerability
	Attack
	Limitations
	Remediation

	Discussion
	References
	Appendix
	Attacks enabled by the Asymmetric Megolm Backup scheme

