
ar
X

iv
:2

20
6.

04
12

3v
1 

 [
cs

.C
R

] 
 8

 J
un

 2
02

2

A Framework for Building Secure, Scalable, Networked Enclaves

Philipp Winter
Brave Software

Ralph Giles
Brave Software

Alex Davidson
Brave Software

Gonçalo Pestana
Brave Software

Abstract
In 2020, Amazon introduced Nitro enclaves—cloud-based

secure enclaves that do not share hardware with untrustwor-

thy code, therefore promising resistance against side chan-

nel attacks, which have plagued Intel’s SGX for years. While

their security properties are attractive, Nitro enclaves are dif-

ficult to write code for and are not meant to be used as a net-

worked service, which greatly limits their potential. In this

paper, we built a framework that allows for convenient and

flexible use of Nitro enclaves by abstracting away complex

aspects like remote attestation and end-to-end encryption be-

tween an enclave and a remote client. We demonstrate the

practicality of our framework by designing and implement-

ing two production-grade systems that solve real-world prob-

lems: remotely verifiable IP address pseudonymization and

private telemetry. Our practical experience suggests that our

framework enables quick prototyping, is flexible enough to

accommodate different use cases, and inherits strong secu-

rity and performance properties from the underlying Nitro

enclaves.

1 Introduction

First introduced in 2015, Intel’s Software Guard Extensions

(SGX) technology inspired diverse applications but also

increasingly sophisticated attacks: researchers successfully

adapted speculative execution attacks [1], injected software

faults [2], and exploited side channels introduced by shared

caches [3], all with the goal of exfiltrating information that

was meant to remain in the enclave. The underlying flaw that

most attacks take advantage of is that the untrustworthy op-

erating system and the enclave share a CPU, which provides

many options for side channel attacks.

In 2020, several cloud providers began offering “confiden-

tial computing” solutions; Google’s is based on AMD’s Se-

cure Encrypted Virtualization (SEV) [4] while Microsoft’s is

based on SGX [5]. Both offerings inherit the attack classes

that plague their respective architectures. Amazon took a dif-

ferent path by offering a new enclave architecture based on

their Nitro virtual machine isolation technology [6]. Nitro en-

claves are separate virtual machines with hardware-enforced

CPU, memory, and device isolation, which imposes limits

on access by untrustworthy code. While the architecture ap-

pears promising, Nitro enclaves remain difficult to use: docu-

mentation is sparse, few applications exist, and enclaves can

only interact with the parent EC2 instance via a constrained,

socket-like interface. This paper presents the design, imple-

mentation, and real-world application of a software frame-

work that facilitates the development of networked Nitro en-

claves. Key features of our framework include (i) the ability

for enclave code to seamlessly and safely access the Internet;

(ii) a design for the horizontal scaling of enclaves by syn-

chronizing secret key material; and (iii) a reproducible build

system and tooling that allows users to remotely verify an

enclave’s authenticity.

During the development of our framework, we had to over-

come several challenges. First, Nitro enclaves are meant to

be highly constrained environments and therefore lack a ded-

icated networking interface. We designed a mechanism that

allows enclaves to seamlessly send and receive data over the

Internet while maintaining an allow list of destinations, for

defense in depth in case of enclave compromise. Second, the

attestation process for Nitro enclaves was not designed to be

performed over the Internet. We developed a way to bind a

TLS session to an attestation document to assure clients that

they are communicating with an authentic enclave. Third,

we had to devise a reproducible and yet easy-to-use build

pipeline that allows end users—regardless of their operating

system—to compile the enclave application and end up with

the exact same image ID as the enclave provider. Fourth,

there is no out-of-the-box way for enclaves to scale horizon-

tally while synchronizing their key material. We therefore

designed a mechanism that allows enclaves to securely share

their key material.

Having overcome the above design challenges, we imple-

mented an easy-to-use Go framework that abstracts away the

difficulties and pitfalls of working with networked enclaves.

The use of Go allows for rapid prototyping and greatly re-

1

http://arxiv.org/abs/2206.04123v1


duces the risk of memory corruption bugs because of Go’s

memory safety. We conduct latency measurements to show

that our framework can handle high-throughputand real-time

applications, and we demonstrate its usefulness and robust-

ness by building two applications on top of it.

Contributions This work makes three core contributions.

• The design and implementation of a freely available Go

framework that facilitates the implementation and de-

ployment of enclave applications. The framework con-

sists of a library that an application can use to run as an

enclave, and tooling that facilitates deterministic builds

and seamless communication with the secure enclave.

• We make it possible via our framework to turn enclaves

into networked applications that can easily scale hori-

zontally to respond to increases in load.

• We build two real-world applications on top of our

framework, the first of which—a remotely verifiable IP

address pseudonymization system—is a contribution in

its own right.

Structure Section 2 provides background on secure en-

claves in general and AWS Nitro enclaves in particular. Sec-

tion 3 introduces the design and implementation of our soft-

ware framework in addition to the build process that guar-

antees reproducible enclave application builds, followed by

Section 4, which presents two production-quality applica-

tions that we built on top of our framework. We evaluate our

framework in Section 5 and discuss its limitations in Sec-

tion 6. Finally, Section 7 contrasts our work with past re-

search.

2 Background

This section provides an overview of secure enclaves in gen-

eral (§ 2.1) and AWS’s implementation in particular (§ 2.2).

2.1 Secure Enclaves

Computers operate on data that is at rest, in transit, and in use.

We have well-understood and practical ways to protect data

at rest (e.g., full disk encryption) and in transit (e.g., TLS)

but only limited solutions for data that is in use. Cryptog-

raphy provides solutions in the form of fully homomorphic

encryption (FHE) and secure multiparty computation (MPC)

but for many applications, those building blocks remain too

slow and cumbersome. Trusted execution environments—in

particular in the form of “secure enclaves”—provide an al-

ternative that is rooted in hardware and code. Unlike FHE

and MPC, enclaves perform at native (or near-native) execu-

tion speed because they are general-purpose computing en-

vironments that are not limited to the computation of care-

fully designed functions. Conceptually, enclaves are isolated

execution environments that are shielded off from a com-

puter’s main execution environment, which runs the untrust-

worthy (from the enclave’s point of view) operating system.

Enclaves offer various security properties but in the context

of this work, we rely on the following three:

Confidentiality An unauthorized entity must not be able to

observe the data that an enclave is computing.

Integrity An unauthorized entity must not be able to modify

the data that the enclave is computing on, or the code it

is running.

Verifiability A separate entity must be able to verify if the

enclave is running the code that its operator claims it is

running.

Modern CPUs of major hardware vendors implement se-

cure enclaves: Intel has SGX, ARM has TrustZone, and

AMD has SEV. A frequent critique of these industry ef-

forts focuses on their proprietary nature. The community

has a conceptual understanding of the mechanisms behind

enclaves but their exact hardware implementation is not dis-

closed, which served as motivation towards an open source

enclave [7]. In practice, enclaves promise to be useful in sit-

uations where a system must process sensitive data while si-

multaneously be shielded off from the complexity (and sub-

sequent insecurity) of general-purpose computers.

2.2 AWS Nitro Enclaves

In this work, we build on top of AWS’s Nitro enclaves. Ni-

tro enclaves are isolated and constrained virtual machines

that run alongside an EC2 instance that is responsible for

starting the enclave, and communicating with it. Crucially,

an enclave does not share hardware resources with its par-

ent EC2 image; it is guaranteed to have its own CPU and

memory which is isolated from the parent EC2 image by the

same hypervisor that isolates EC2 instances from each other.

As far as computing resources go, Nitro enclaves are essen-

tially an independent computer, with its own operating sys-

tem, CPU, and memory, but without a networking interface

or persistent storage. By design, the enclave’s network traf-

fic must go through the parent EC2 instance, constrained to a

minimal VSOCK interface [8]. Originally proposed for com-

munication between a hypervisor and its virtual machines,

AWS repurposed the VSOCK interface to serve as commu-

nication channel between an enclave and its parent EC2 in-

stance. From a developer’s point of view, the VSOCK inter-

face is a point-to-point interface connecting the two. On the

address layer, 32-bit context IDs take the role of IP addresses

2



Application

source code

Docker

image

Enclave

image
docker nitro-cli

Figure 1: The development workflow for compiling enclave

applications. Docker’s command line tool compiles applica-

tion source code into a Docker image, which is then com-

piled to an enclave image file using the nitro-cli command

line tool.

in VSOCK interfaces. For example, the enclave may have

context ID 4 while its parent EC2 instance may have context

ID 3. On the transport layer, one can use the same protocols

that one can use over the IP-based address family; namely

TCP, UDP, etc.

Figure 1 illustrates the development workflow for enclave

applications: the workflow begins with the creation of a

Docker image that contains the application that will run in

the enclave. Using Amazon’s nitro-cli command-line tool,

the developer then compiles the container image to an en-

clave image file (EIF). The compilation process results in

a number of measurement checksums that uniquely identify

the image itself, its kernel, and application. As we will dis-

cuss later in the paper, these measurements are key to the

remote attestation process. Once the EIF is ready, the devel-

oper starts the enclave on an EC2 instance using the nitro-cli

command-line tool. The only way for the EC2 instance to

exchange data with the enclave is via the VSOCK interface.

3 Framework Design

This section introduces the design of our framework. We

start by laying out the involved parties and their respective

trust assumptions (§ 3.1), followed by an overview of our

system (§ 3.2). We then discuss the two major aspects of

our framework: the build system (§ 3.3) and the framework

itself (§ 3.4).

3.1 Trust Assumptions

Our setting has three participants that have the following

trust assumptions:

1. The service provider runs a service for its clients. As

part of its operations, the service provider wants to pro-

cess sensitive client information.

2. The client is a user of the service provider. It does

not trust the service provider with its sensitive informa-

tion and demands verifiable guarantees that the service

provider will never see the client’s sensitive information

in plaintext.

3. The enclave provider makes available enclaves to

the service provider. Both the client and the service

provider trust that the enclave provider’s enclaves have

the advertised security attributes of integrity, confiden-

tiality, and verifiability.

3.2 Design Overview

We begin with a short, informal overview of our system to

provide intuition. The subsequent sections are going to elab-

orate on this high-level picture. The life cycle of an enclave

application that uses our framework involves five steps:

1. The service provider implements a new service with the

intention of running it in an enclave. Once the imple-

mentation is finished, the service provider publishes the

source code for its clients to audit, and runs the code

in an enclave. After booting, the enclave automatically

obtains a CA-signed TLS certificate.

2. Users audit the source code. Once a user has convinced

herself that the code is free of bugs, she compiles the

code using the framework’s deterministic build system,

resulting in an image checksum.

3. The client establishes an end-to-end encrypted network

connection with the enclave, facilitated by the EC2 host

blindly forwarding encrypted bytes. Right after estab-

lishing the TLS connection but before revealing any sen-

sitive information, the client provides a nonce and asks

the enclave for an attestation document.

4. The enclave receives the nonce and asks its hypervisor

to generate an attestation document that should contain

the client-provided nonce and the fingerprint of the en-

clave’s CA-signed certificate in addition to the usual im-

age measurement checksums. The resulting attestation

document is returned to the client.

5. The client performs various checks (see § 3.4.4 for de-

tails) and trusts the enclave if all checks pass. The client

is then convinced that it’s communicating with the code

that the user audited in the previous steps, and is willing

to reveal her sensitive information to the enclave.

3.3 The Reproducible Build System

Only a small subset of the users will be skilled enough pro-

grammers to audit the enclave’s code for bugs. We expect

non-technical users to trust that other users—or perhaps pro-

fessional code audit companies—have studied the code and

pointed out potential bugs. Once a user has convinced her-

self of the code’s correctness, she compiles the code to arrive

at an image ID. Crucially, we need a deterministic mapping

between the code and its corresponding image ID because

the service provider and clients must agree on the image ID

that’s running in the enclave.

3



The popular Docker tool does not offer a deterministic

mapping because, among other things, Docker records times-

tamps in its build process, causing subsequent builds of iden-

tical code to result in different image IDs.1 To obtain repro-

ducible builds, we replace Docker with the kaniko tool [9].

Kaniko’s main purpose is to build container images from a

Dockerfile while itself in a container, but we use kaniko be-

cause it can do so reproducibly. As long as the client and ser-

vice provider use the same enclave source code, Go version,

and kaniko version, they can build identical images—even

when compiling the code on different platforms, like Mac OS

and Linux. Equipped with a locally-compiled Docker image

ID, the client is now ready to interact with the enclave.

3.4 Framework Components

Having discussed how the client and service provider can in-

dependently compile identical Docker image IDs, we now

turn to the specific components of our framework. The fol-

lowing sections discuss how the framework seeds its empty

entropy pool (§ 3.4.1); how it communicates with the out-

side world (§ 3.4.2); how it obtains a CA-signed certifi-

cate (§ 3.4.3); how we facilitate remote attestation (§ 3.4.4);

how enclaves can share their key material to allow for hori-

zontal scaling (§ 3.4.5); how to thwart side-channel attacks

(§ 3.4.6), how to ingest secrets (§ 3.4.7), and concludes with

a simple example (§ 3.4.8).

3.4.1 Seeding the Entropy Pool

Like many virtual machines, a Nitro enclave is an entropy-

starved, sterile environment without any periphery devices

that help the kernel seed its entropy pool. To work around

that, the Nitro hypervisor can provide randomness for the

enclave to seed its entropy pool. Our framework automati-

cally takes advantage of that when it first starts (step ➊ in

Figure 2), so application developers never encounter function

calls that block because of insufficient randomness.

3.4.2 Enabling Networking

Recall from Section 2.2 that Nitro enclaves have no network-

ing interface and are only able to communicate with their

respective EC2 host. Our framework therefore needs proxy-

ing code that runs on the EC2 host and forwards networking

packets between clients and the enclave. Figure 2 illustrates

the design of the networking architecture.

When the enclave first starts, it fetches a CA-signed cer-

tificate from Let’s Encrypt (cf. § 3.4.3) using the ACME pro-

tocol [10], which allows for the automated issuance of cer-

tificates. To do so, it first connects to Let’s Encrypt’s infras-

tructure via a SOCKS proxy (step ➋). Let’s Encrypt does not

1In essence, a Docker image is merely a file system. A Docker image

is reproducible when separate build processes arrive at the exact same file

system, including meta data like timestamps.

EC2 parent Enclave

Hypervisor

TCP proxy

SOCKS

proxy

Application

Back end

Let’s Encrypt

Client

V
S

O
C

K

in
te

rf
ac

e

➊

➋➌

➍ ➎

Figure 2: Upon bootstrapping, the application first asks the

hypervisor for randomness to seed its entropy pool (➊), fol-

lowed by initiating an ACME session to obtain a Let’s

Encrypt-signed certificate (➋), after which Let’s Encrypt

probes the enclave and issues the certificate (➌). Afterwards,

clients can establish HTTPS connections with the enclave

(➍) and the enclave can forward data to its back end (➎).

All of the application’s ingress and egress traffic is routed

over a TCP proxy that translates between AF_INET and

AF_VSOCK. Egress traffic is reaches the Internet via a

SOCKS proxy.

publish its endpoints’ IP addresses, which is why we cannot

use point-to-point connections and have to rely on the flex-

ibility of a SOCKS proxy.2 Let’s Encrypt then verifies that

the enclave can answer queries on behalf of the requested do-

main name, and issues a certificate to the enclave (step ➌).

Clients establish end-to-end encrypted TLS sessions to

the enclave with the help of a TCP proxy on the EC2 host

that translates between AF_INET (traditional, IP-based sock-

ets) and AF_VSOCK (VSOCK-based sockets). Note that the

EC2 host is blindly forwarding encrypted bytes, and can-

not see what data the client and the enclave are exchanging

(step ➍). In an optional, final step, the enclave can send data

to a back end (step ➎).

In case of an enclave compromise, we don’t want the ap-

plication to be able to leak data to an attacker-controlled end-

point via the SOCKS proxy, which is why we use an allow

list on the SOCKS proxy. It is the service provider’s respon-

sibility to maintain the allow list.3 In a minimal application,

the allow list consists of two endpoints:

1. The domain name acme-v02.api.letsencrypt.org to inter-

act with Let’s Encrypt’s infrastructure.

2. The IP addresses or domain names of whatever back

end machine the enclave needs to talk to.

2Our SOCKS proxy is available at https://github.com/brave-intl/

bat-go/tree/nitro-utils/nitro-shim/tools/socksproxy and our TCP

proxy is available at https://github.com/brave-experiments/viproxy.
3Note that clients are unable to remotely verify that the service provider

correctly configured an allow list because the SOCKS proxy runs on the

EC2 host and not in the enclave application.

4

https://github.com/brave-intl/bat-go/tree/nitro-utils/nitro-shim/tools/socksproxy
https://github.com/brave-intl/bat-go/tree/nitro-utils/nitro-shim/tools/socksproxy
https://github.com/brave-experiments/viproxy


If an attacker discovered a remote code execution bug in

the enclave application and uses the bug to make the enclave

establish a connection to any domain name that is not part

of the allow list, like evil.com, the SOCKS proxy is going to

reject the connection.

3.4.3 End-to-end Secure Channel

Having established how the enclave can send and receive net-

work packets, we now turn our attention to secure channels;

specifically: how can a client rest assured that it is talking to

audited enclave application code, without taking advantage

of an existing trust relationship?

The application can register arbitrary HTTP handlers that

are accessible to the outside world to process data and pro-

vide services. Our framework provides a secure channel

based on HTTPS, i.e., we make it possible for a client to es-

tablish an HTTPS connection with an enclave in a way that

the TLS connection is terminated inside the enclave. Clients

can use this channel to access the application without reveal-

ing data to third-party observers, or to the service provider,

outside of the specific ways the enclave application permits.

Once the enclave has initialized its entropy pool, it ob-

tains an HTTPS certificate that allows clients to establish

end-to-end encrypted session with the enclave. Crucially, the

HTTPS certificate lives and dies inside the enclave and its

private key cannot be extracted (or injected) by the service

provider because enclaves are sealed at runtime. Our frame-

work allows for both the creation of a self-signed or a CA-

signed certificate. If a self-signed certificate is desired, the

framework creates and signs a certificate for a given FQDN.

To get a CA-signed certificate, the framework uses Let’s En-

crypt’s ACME protocol because it allows for the generation

of a certificate with no human interaction. In that case, the en-

clave initiates an HTTP-01 challenge4 connection with Let’s

Encrypt’s infrastructure via our SOCKS proxy (cf. Figure 2),

and subsequently expects an incoming connection from Let’s

Encrypt to port 80, which the EC2 host forwards to the en-

clave. Note that the EC2 host can also obtain a CA-signed

certificate for the same FQDN because the enclave and the

EC2 host share an IP address. This is however of little use to

the EC2 host as we will show in the next section.

3.4.4 Remote Attestation

By default, Nitro enclaves only allow for local attestation.

We now discuss how we allow clients to remotely retrieve

and verify an enclave’s attestation. After the client estab-

lishes an HTTPS connection with the enclave, it needs to

know that (i) the TLS connection it just established is ter-

minated inside the enclave (instead of by the EC2 host) and

4ACME supports multiple challenge types, with HTTP-01 being the

most common one [11]. In HTTP-01, the ACME infrastructure provides the

client with a token, which must subsequently be available at a pre-defined

path on the client’s Web server.

(ii) the enclave is running the code that the user audited

in the previous step. To that end, the client requests the

enclave’s attestation document—a hypervisor-signed docu-

ment that attests to the container image ID that the enclave is

running. Enclaves communicate with the hypervisor via the

ioctl system call, which makes use of /dev/nsm, a device that

is only available inside a Nitro enclaves. To request an attes-

tation document, the client provides a nonce—a 160-bit ran-

dom value—whose purpose is to prevent the service provider

from replaying outdated attestation documents. Phrased dif-

ferently, the client provides a nonce to convince itself that

it’s talking to a live enclave. In practice, clients make the fol-

lowing HTTP request to obtain an enclave’s attestation doc-

ument:

GET /attestation?nonce=8083...23b7 HTTP/1.1

The enclave receives the request through the TCP proxy,

asks the hypervisor to include the nonce and the fingerprint

of the enclave’s X.509 certificate in the attestation document,

and sends the resulting attestation document to the client. By

asking the hypervisor to include the certificate fingerprint in

the attestation document, we effectively bind a TLS session

to an enclave, which is key to assuring the client that it is

in fact talking to an enclave. Upon receiving the attestation

document, the client then verifies the following in order:

1. The attestation document is signed by the AWS PKI

whose public key is known to all parties.

2. The challenge nonce is part of the attestation document.

3. The fingerprint of the enclave’s X.509 certificate from

the TLS session is part of the attestation document.

4. The enclave’s image ID is identical to the image ID that

the client compiled locally.

Only if all four conditions hold is the client convinced that

it is talking to an enclave running the code that the client

audited, and that the TLS connection is terminated by the

enclave. Note that the EC2 host is able to intercept HTTPS

connections with its own CA-signed certificate but clients

will only trust the EC2 host if (and only if) it can present

an attestation document that is valid for the enclave image,

which it can’t because it is unable to spoof the AWS PKI sig-

nature that authenticates the attestation document. The only

way for the EC2 host to obtain such an attestation document

is to spawn an enclave that runs the exact code that the client

is expecting—and it already is doing exactly that. Now that

the client has established a trust relationship with the enclave,

it is ready to reveal sensitive information to the enclave.

While attestation documents can be generated quickly and

in rapid succession (cf. § 5.3), they do require an extra round

trip between the client and the enclave before the client is

willing to reveal sensitive information: the client first pro-

vides a nonce to the enclave, the enclave responds with an

5



attestation document, and only after the client verified the

document is it willing to reveal its sensitive information. To

eliminate unnecessary future round trips, clients should use

TLS session resumption once they have verified the enclave’s

attestation document. The service provider is unable to see

the secret key material that protects the TLS session between

client and enclave, so it is safe to re-use a once-established

TLS session and forgo the unnecessary round trip.

Manual Client-side Verification In general, we envision

that remote attestation is handled transparently by client soft-

ware, without involving the user. In some cases however,

users may wish to manually verify an enclave. Even for de-

velopers, remote attestation is a complex process that is dif-

ficult to understand and work with. To make matters more

complex, in our setting end users are expected to conduct re-

mote attestation. We therefore made a careful effort to ab-

stract away technical details. A user wishing to remotely

verify an enclave essentially asks herself “does the enclave

that’s exposed at a given URL run the source code that I just

audited?” We built a tool set that reduces the process to the

running of a Makefile,5 i.e.:

$ make verify CODE="/path/to/enclave/code/" \

ENCLAVE="https://example.com/attest"

The first argument, CODE, points to the directory contain-

ing the source code that the enclave is supposedly running,

and the user audited. The second variable, ENCLAVE, points to

the URL endpoint of the enclave that the user’s client is con-

necting to. When the user runs this command, the Makefile

deterministically compiles the given source code to obtain its

image ID, asks the enclave for an attestation document, veri-

fies the document, and ensures that the attestation document

is for the image ID that was compiled in the first step. If all

checks pass, the tool informs the user accordingly.

3.4.5 Sharing Key Material

Recall that enclaves are essentially sealed at runtime, prevent-

ing anyone (including both Amazon and the service provider)

from extracting key material that was generated inside the en-

clave. While this is a desirable property, it complicates hori-

zontal scaling. If a single enclave is unable to handle the ser-

vice provider’s traffic load, one must scale horizontally by

starting new enclaves. In some applications, it is unaccept-

able for each enclave to use distinct key material. Instead,

enclaves must synchronize their key material, so they appear

to the outside world like a single machine.

While it is possible to build key synchronization using

tools like the AWS key management service (KMS),6 we re-

5The source code is available at: https://github.com/

brave-experiments/verify-enclave.
6One could encrypt the keys using a KMS policy that dictates that only

enclaves are allowed to decrypt it, and store the encrypted key in a location

that all enclaves can access, e.g., an S3 bucket.

New

enclave

Original

enclave

Virtual network

DNS resolver

Request DNS SRV records

Request nonce
nonceo

Request keys

An(nonceo || Kn || noncen)

Ao(noncen || Enc(Kn,s))

Figure 3: When a new enclave bootstraps, it discovers exist-

ing enclaves by obtaining the DNS SRV record for its own,

hard-coded FQDN. The enclave then initiates key synchro-

nization by first requesting a nonce. Then, the new enclave

requests the origin enclave’s key material by submitting its

own attestation document, followed by receiving the ori-

gin enclave’s attestation document, which contains encrypted

key material.

frain from using KMS because there is no straightforward

way for users to verify that the service provider is using KMS

as promised. We therefore devise a new protocol that enables

key synchronization without having to rely on external ser-

vices.

We solve this problem in two steps: discovery and syn-

chronization. First, enclaves must be able to discover each

other, i.e., learn each other’s IP addresses. Then, enclaves

can establish connections to each other and initiate key syn-

chronization. Our protocol dictates that when a new enclave

bootstraps, it first tries to discover already-existing enclaves.

If there are none, the enclave knows that it is the “origin”

enclave; it generates new key material and is prepared to

share it with future enclaves. If however it discovers other en-

claves, the new enclave establishes a connection to another

randomly-chosen enclave and initiates key synchronization.

Crucially, key material is only shared after mutual attesta-

tion, i.e., the original and subsequent enclaves verify each

other, and only exchange key material if remote attestation

succeeds. Key synchronization happens in three steps, as il-

lustrated in Figure 3.

1. Once a new enclave is spun up, it queries the DNS SRV

record of the FQDN that is hard-coded in the enclave,

e.g., example.com. The DNS resolver will return the

record, containing a list of enclaves that are already run-

ning and initialized. The new enclave picks a random

enclave from the list and initiates key synchronization.

2. The new enclave asks the existing enclave for a ran-

dom nonce, nonceo. Each enclave caches nonceo for one

minute.

3. The new enclave now requests the key material from

the existing enclave. As part of the request, it provides

6

https://github.com/brave-experiments/verify-enclave
https://github.com/brave-experiments/verify-enclave


its attestation document that contains nonceo (to prove

freshness to the existing enclave); noncen (the existing

enclave is expected to add this nonce to its attestation

document); and Kn (a public key to which the key ma-

terial should be encrypted). Upon receipt of the new en-

clave’s attestation document, the existing enclave ver-

ifies the attestation document’s signature and ensures

that the new enclave is running the same code, i.e., the

measured checksum value that uniquely identifies the

enclave image is identical. Once the existing enclave is

convinced that it is dealing with a genuine new enclave,

it creates an attestation document by including noncen

(to prove freshness to the new enclave) and Enc(Kn,s)—
the key material s is encrypted using the public key that

the new enclave provided in the request. Finally, the new

enclave verifies the attestation document, decrypts the

key material, and uses it to finish bootstrapping.

Needless to say, the security of key synchronization is

paramount. As an optional first layer of defense, synchroniza-

tion should be configured to use a private network segment

limited to inter-enclave communication, such as the internal

network that is part of a Kubernetes cluster that is manag-

ing scaling for the application. While optional, Kubernetes

is an attractive component in our setting considering that

enclaves are essentially compiled Docker images. The sec-

ond and main layer of defense is the fact that an enclave has

to provide a valid attestation document before the origin en-

clave reveals its key material. As long as the origin enclave

knows that an identical and authentic copy of itself is asking

for key material, it will readily provide it.

3.4.6 Side-channel Attacks

The enclave’s parent EC2 host cannot see what clients send

to the enclave but it can see how much clients send and how

long it takes the enclave to process data. The EC2 host can

exploit these side channels to learn more about the client’s

confidential information and computation. While such side

channels must be avoided, our framework is not the place to

do so. Instead, it is the application developer’s responsibility

to identify and address this class of attacks. Section 4 intro-

duces two applications and discusses side channel attacks in

their respective setting.

Similarly out of scope are programming bugs in the en-

clave application. Memory corruption bugs may be more

difficult to exploit in an enclave application7 but Lee et al.

adapted a return-oriented programming attack against SGX

to show that such attacks are practical [12].

7The untrustworthy operating system (that may be under the attacker’s

control) is prohibited by hardware to read the enclave application’s memory

or registers in clear text, which forces the attacker to operate blindly.

3.4.7 Ingesting Secrets

A key design requirement of our framework is that users can

audit and verify the code that is running inside an enclave,

which means that the service provider is unable to hide any

software configuration from the user. Service providers can

work around this shortcoming by implementing HTTP han-

dlers that take as input arbitrary data, and use it to update the

enclave’s state. Consider a system that takes as input client IP

addresses, anonymizes them, and forwards the anonymized

addresses to a back end (cf. § 4.1). The service provider now

wants to compare submitted IP addresses to a confidental

deny list. However, if the deny list is hard-coded in the freely

available enclave application, it is readily visible to anyone.

The service provider can solve this problem by adding to the

enclave application a new HTTP handler that takes as input

the confidential data it seeks to protect from the users’ eyes.

Once the enclave is running, the service provider loads the

confidential data at runtime, by calling the end point. To pre-

vent users from submitting bogus data, the endpoint could

hard-code the service provider’s public key and only accept

data that carries a valid signature of the service provider’s

private key.

This technique for ingesting secrets into an enclave’s run-

time is flexible—so flexible, in fact, that the service provider

could abuse it to ingest code at runtime, which would nullify

the enclave’s verifiability requirement. Vigilant users would

never trust an enclave whose code can change at runtime. We

therefore argue that an HTTP handler for the purpose of in-

jesting secrets must be constrained to a point that only data

of a well-defined type can be injested.

3.4.8 An Example

Figure 4 illustrates an example of a simple “hello world” ap-

plication. The code initializes a new enclave struct (line 16),

followed by adding a handler that processes requests for GET

/hello-world (line 24). Finally, the application starts the en-

clave using a function call that does not return (line 27).

The configuration object (line 17) consists of four fields.

The first field determines the enclave’s FQDN, which is re-

quired when obtaining an X.509 certificate. The port is lis-

tened on by the enclave via the VSOCK interface. It is the

EC2 host’s responsibility to forward incoming traffic to this

port. The third field determines if the enclave should use

Let’s Encrypt’s ACME protocol to obtain a CA-signed cer-

tificate at runtime. The last flag instructs the framework to

print debug information. Note that this is only useful when

the enclave is invoked in debug mode, which disables remote

attestation.

7



1 package main

2

3 import (

4 "fmt"

5 "log"

6 "net/http"

7

8 nitro "REDACTED"

9 )

10

11 func handler(w http.ResponseWriter, r *http.Request) {

12 fmt.Fprintln(w, "hello world")

13 }

14

15 func main() {

16 enclave := nitro.NewEnclave(

17 &nitro.Config{

18 FQDN: "example.com",

19 Port: 8080,

20 UseACME: true,

21 Debug: false,

22 },

23 )

24 enclave.AddRoute(http.MethodGet,

25 "/hello-world",

26 handler)

27 if err := enclave.Start(); err != nil {

28 log.Fatalf("Terminated: %v", err)

29 }

30 }

Figure 4: An example of a simple enclave application which

registers an HTTP GET handler for the path /hello-world

(line 24) and, when accessed, responds with the string “hello

world” in the response body (line 12).

4 Applications

We demonstrate the practicality of our framework by build-

ing two applications on top of it. First, in a novel system that

pseudonymizes client IP addresses for anti-fraud (§ 4.1); sec-

ond, to implement the shuffler component that is part of Bit-

tau et al.’s PROCHLO paper [13] (§ 4.2). In both cases, we

had to overcome minor obstacles but found that our frame-

work greatly facilitated the deployment of enclave code.

While our framework is written in Go, developers can

build enclave applications in languages other than Go, by

taking advantage of a foreign function interface (FFI) that

allows Go code to invoke functions in other languages. We

successfully moved a Rust code base into a Nitro enclave by

implementing a lightweight, Go-based wrapper (in less than

200 lines of code, excluding our framework’s code) that inter-

acts with the Rust code via an FFI.8 Importantly, the compi-

lation process is still reproducible as long as the Rust code’s

dependencies are pinned via Rust’s Cargo tool chain.

8The code is available at: https://github.com/brave-experiments/

star-randsrv.

4.1 IP Address Pseudonymizer

Our first application is the system that originally moti-

vated us to build the enclave framework. Consider a service

provider that offers various services to its users. The service

provider seeks to know as little as possible about its users,

which means that it doesn’t capture and store any of its users’

IP addresses. IP addresses are however an important signal in

the service provider’s fight against a subset of its users that

commit fraud. This constitutes a conundrum: Should the ser-

vice provider collect all its users’ IP addresses to strengthen

its anti-fraud efforts? Or continue to discard the addresses,

and tolerate the fraud?

This section presents an application that strikes a balance

between these two extremes; an IP address pseudonymiza-

tion system that can verifiably pseudonymize IP addresses.

The service provider can then run its anti-fraud logic over

pseudonymized IP addresses rather than real ones. While

some information is lost in the process, we argue that what’s

most important—the relationship between IP addresses—

can be preserved thanks to our use of the Crypto-PAn scheme

that Xu et al. presented in their 2001 paper [14]. Crypto-

PAn encrypts both IPv4 and IPv6 addresses by implement-

ing a 1:1 mapping f that is keyed by k from an IP address to

its pseudonymized equivalent while preserving the address’s

prefix, i.e., two IP addresses that share an n-bit prefix also

share an n-bit prefix after pseudonymization as illustrated by

the following example:

f (k,“10.0.0.1”) = “242.32.192.193” (1)

f (k,“10.0.0.123”) = “242.32.192.154” (2)

Figure 5 illustrates the system design. Clients periodically

communicate with a service behind a reverse TLS proxy

whose job—among other things—is to hide client IP ad-

dresses from the service. The proxy is configured to mirror

incoming client requests to the enclave, but with client IP

addresses intact, in the form of a custom HTTP header like

X-Client-Addr: 1.2.3.4. The service is interactive, and re-

sponds to the client, but the enclave is passive, and simply

consumes the requests. Recall that the (untrusted) EC2 host

that hosts the enclave is unable to see the client’s IP address

because the TLS proxy establishes a TLS session that’s ter-

minated inside the enclave. The pseudonymizer takes as in-

put client requests, extracts the IP address that the proxy in-

serted from the HTTP header, pseudonymizes them, and for-

wards pseudonymized addresses in batches to the configured

back end. Components in dark gray are under the service

provider’s control.

One problem however remains: how do clients know that

the TLS proxy is in fact configured to discard client IP ad-

dresses before forwarding requests to the service? Unfortu-

nately, cloud providers don’t offer satisfying solutions for

this problem but some cloud providers allow for the creation

8

https://github.com/brave-experiments/star-randsrv
https://github.com/brave-experiments/star-randsrv


Client TLS proxy

Service

EC2

Enclave

Back end

Request (without IP address)

Request (with IP address)

Pseudonymize

Figure 5: Clients communicate with a service that’s available

behind a third-party TCP proxy whose purpose is (among

other things) to drop client IP addresses, so the service never

sees them. The proxy is configured to mirror incoming client

requests with IP address to the enclave, where addresses are

pseudonymized and finally forwarded to a back end for anal-

ysis.

of roles whose permissions are configurable. The service

provider can create a read-only role in the TLS proxy’s con-

figuration interface and publish the credentials for this role.

Doubtful users can then log in to this role and verify that

the TLS proxy is configured to discard IP addresses when

forwarding requests to the service. As long as the TLS proxy

operator is a neutral third party with no incentive to lie, which

is typically the case, both the client and service provider can

trust it. We acknowledge that this is not an elegant solution

but a mere hack, to work around the shortcoming of Nitro

enclaves not having a networking interface. If enclaves had a

networking interface that could not be monitored by the un-

trusted EC2 host, clients could directly talk to the enclave,

obviating the need for a TLS proxy that hides client IP ad-

dresses from the EC2 host.

Side channels The untrusted EC2 host never sees client IP

address in plaintext but it can exploit timing and volume side

channels to infer information about the encrypted requests

that the TLS proxy forwards to the enclave. We close this

side channel by adding code to the enclave application which

queues pseudonymized IP addresses until two conditions are

true: (i) we have at least n pseudonymized addresses, and (ii)

at least t minutes have passed.

Key rotation A single pseudonymous IP address with-

out context cannot be reversed and reveals nothing about

its corresponding plaintext IP address but that changes if

the service provider expects the client to repeatedly report

its IP address to the enclave. For example, a sequence of

pseudonymized IP addresses can reveal either that (i) the

client has not changed its IP address, or (ii) the client changed

its IP address but is likely to use the same ISP (e.g., if the

/24 prefix remains the same), or (iii) the client changed IP

addresses and ISPs (e.g., if the prefixes of the pseudony-

mous IP addresses share less than, say, eight bits). While

this is useful information for anti-fraud operations,9 it also

reveals information about a given client’s location, and ser-

vice providers may want to err on the side of privacy instead.

We therefore added a mechanism for periodic key rotation, so

a given client’s pseudonymized IP addresses are only mean-

ingful within a given rotation period. According to the results

of Padmanabhan et al., we believe that a key rotation period

of three weeks strikes a useful balance between privacy for

the client and usefulness for the service provider [15, § 3.2]:

several ISPs re-assign many of their users’ IP addresses in

less than—or up to—two weeks.

In the final step, the enclave submits the client’s

pseudonymized IP address and a hash of the key to the ser-

vice provider’s back end, where anti-fraud logic is imple-

mented. The implementation details of both the back end and

its anti-fraud logic are beyond the scope of this paper.

Implementation Our pseudonymization service counts ap-

proximately 1,000 lines of code, including comments and

tests. It is important to keep the source code small for both

security and transparency: a large code base is more likely to

have security-critical bugs and is also more difficult for users

to audit.

Alternative pseudonymization In addition to Crypto-

PAn, we implemented a second pseudonymization method

that is based on HMAC-SHA-256. Like Crypto-PAn, the

HMAC is keyed by a 160-bit secret that the enclave gener-

ates when first bootstrapping. Unlike Crypto-PAn however,

the HMAC-based method does not preserve the prefixes of

IP addresses: two IP addresses that differ in only a single bit

will result in entirely different hashes. On the privacy/utility

spectrum, the HMAC-based method therefore leans more to-

ward privacy.

4.2 k-anonymity Enforcer

Bittau et al.’s SOSP’17 paper [13] proposes a private analyt-

ics system that helps service providers gain insight into their

clients’ usage patterns. Their system—called PROCHLO—

consists of three components: (i) software running on the

client, which can (but doesn’t have to) add local differen-

tial privacy to client measurements. Measurements consist

of product-relevant answers to questions like “has the user

interacted with her browser in the last 24 hours?” These mea-

surements are then sent to (ii) a shuffler, which enforces a

configurable k-anonymity threshold on incoming measure-

ments. The shuffler then sends measurements meeting that

threshold to (iii) an analytics system that the service provider

9For example, a service provider would deem a client that constantly

changed ISPs suspicious; it is likely to use proxies to connect to the service

provider’s infrastructure.

9



Client 1

Client 2

Client 3

EC2

Enclave

Back end

key=foo

key=foo

key=bar

key=foo

Shuffle

Figure 6: A conceptual overview of our shuffler implemen-

tation. Clients send measurements to the shuffler, which en-

forces a k-anonymity threshold—in this case for k=2. Only

one of the two measurement types passes the threshold and

is forwarded to the back end.

uses to explore users’ anonymized data. The PROCHLO pa-

per envisions the shuffler running in a secure enclave; other-

wise users would have no reason to trust that the shuffler is

in fact enforcing k-anonymity thresholds. To that end, the au-

thors designed the shuffler to run inside an Intel SGX enclave,

which was challenging considering the memory constraints

that SGX imposes. For more details about the shuffler, refer

to the original PROCHLO paper [13, § 3.3].

As part of an unrelated research project, we were exper-

imenting with private telemetry, and we therefore used our

framework to re-implement the shuffler in approximately

1,000 lines of code.10 Our implementation is a near-complete

clone of the shuffler as it was proposed in the PROCHLO pa-

per but for simplicity, we did not implement nested encryp-

tion [13, § 3]. Figure 6 shows that our shuffler takes as in-

put confidential client measurements and enforces a config-

urable k-anonymity threshold on those measurements. Every

t seconds, the shuffler discards messages that don’t meet the

threshold and forwards the remaining messages to its back

end.11 Before clients agree to sending their sensitive mea-

surements to the shuffler, they audit its source code and per-

form remote attestation, to convince themselves that their

measurements are processed by an authentic enclave.

Compared to Bittau et al.’s original, SGX-based design,

our Nitro-based implementation has two key advantages:

(i) Nitro’s underlying hardware isolation makes our imple-

mentation more robust to hardware side channel attacks and

(ii) Nitro doesn’t suffer from the same resource constraints

as SGX, which renders our implementation easier to use and

less error-prone.

Side channels The untrustworthy parent EC2 host can take

advantage of the same side channel as with the IP address

pseudonymizer. In particular, the EC2 host can observe when

10The code is available at: https://github.com/brave-experiments/

p3a-shuffler.
11The variable t depends on the rate of incoming measurements. Reason-

able values can range from hours (if the shuffler constantly sees a high rate

of incoming measurements) to days.

and how many requests clients make. Like with the IP ad-

dress pseudonymizer, the PROCHLO paper closes this side

channel by aggregating requests, preventing the EC2 host

from linking incoming to outgoing requests.

5 Evaluation

We evaluate our enclave framework with respect to security

(§ 5.1), financial cost (§ 5.2), and performance. As for per-

formance, we study the rate at which one can generate at-

testation documents (§ 5.3) and measure end-to-end request

latency and throughput (§ 5.4).

5.1 Security Considerations

There are three key components to the overall security of en-

clave applications; (i) Amazon’s Nitro enclave system itself,

(ii) our framework, and (iii) the application that runs on top

of our framework.

The very foundation of our framework’s security lies in

the soundness of the design of Nitro enclaves. While Ama-

zon published the conceptual design, the concrete hardware

and software implementation remains confidential. The de-

cision to allocate physically separate resources to enclaves

appears promising but only time will tell if Nitro enclaves

can resist the types of attacks that have been plaguing SGX.

If we assume that Nitro enclaves are acceptably secure, the

next critical layer is our software framework.

A significant security aspect of our framework is its size;

it is well understood that complexity is the enemy of secu-

rity. Our framework counts less than 700 lines of code and

has four direct dependencies that are not maintained by ei-

ther us or the Go project.12 Four is worse than zero, but is

still manageable and reasonably easy to audit in its entirety.

We believe that our choice of using Go and the deliberately

small trusted computing base greatly reduces—but does not

eliminate!—the attack surface.

The highest layer in the software stack is the enclave ap-

plication itself. The biggest security threat are side channel

attacks and programming bugs—both unintentional and in-

tentional. It is the application developer’s responsibility to

prevent side channel attacks and write bug-free code. As we

pointed out in Section 6, programming bugs can be inten-

tional, i.e., the service provider may deliberately introduce

bugs that leak sensitive information. From the user’s point of

view, eternal vigilance is therefore the price of security.

12The dependencies are chi [16] (provides an HTTP request router),

nsm [17] (provides an interface to interact with the Nitro hypervisor),

vsock [8] (provides an API for the VSOCK address family), and tenus [18]

(provides an API to configure Linux’s networking devices).

10

https://github.com/brave-experiments/p3a-shuffler
https://github.com/brave-experiments/p3a-shuffler


EC2 parent Enclave

TCP proxy
Stress

test tool
Application

VSOCK

interface

Figure 7: Our stress test tool tests the performance of our crit-

ical path, consisting of the TCP proxy, the VSOCK interface,

and Go’s HTTP stack in the enclave application.

5.2 Financial Cost

Nitro enclaves do not incur any extra cost in addition to what

the underlying EC2 host costs—they can be considered a

“free” extension to EC2. Nitro enclaves are however only

available for select types of EC2 instances because they re-

quire their own CPU and a minimum amount of memory, and

those instance types are pricier than the lowest tier that AWS

offers.

We are currently working on deploying the IP address

pseudonymization prototype that we introduced in Sec-

tion 4.1. We estimate that our enclave is going to have to

handle an average of 5,000 requests per minute, coming from

more than ten million clients. Our test deployment uses a sin-

gle c5.xlarge EC2 host in the U.S. East region which costs

$0.17 per hour to operate, amounting to approximately $125

per month.

5.3 Attestation Documents

The fetching of attestation documents is a critical part of our

framework’s overall performance. We wrote a stress test tool

that requests as many attestation documents as it can over

sixty seconds. The tool is essentially a minimal enclave appli-

cation that requests attestation documents in a loop. For each

attestation document, we asked the hypervisor to include an

incrementing nonce, to avoid any speedups by caching. We

were able to obtain approximately 900 documents per sec-

ond, with each request taking a median of one millisecond

(s = 0.3ms) to fetch the attestation document.13

5.4 Application Latency and Throughput

Next, we set out to measure the networking latency of the

critical path, as illustrated in Figure 7. In particular, we test

the latency of our TCP proxy, the VSOCK interface between

EC2 and enclave, and a minimal enclave application. We

measure latency in three separate setups, designed to help

us understand how much latency each component in our data

flow adds:

13We performed our measurements on a c5.xlarge EC2 host which comes

with four CPUs and eight GiB of memory.

Setup Reqs/sec Mean lat. (ms) Max lat. (ms)

Full 7,500 12.7 56.0

No proxy 14,100 6.5 52.0

Direct 27,900 3.2 50.0

Figure 8: Using 100 concurrent requests and 100,000 re-

quests in total.

Full: This represents the full data flow as it would occur in

production, i.e. client → TCP proxy → VSOCK inter-

face → enclave application.

No proxy: This setup does not contain the TCP proxy, i.e.,

the client talks to the VSOCK interface directly, i.e.

client → VSOCK interface → enclave application.

Direct: This setup does not contain the TCP proxy and the

VSOCK interface. Instead, the client directly talks to an

application instance that is running outside the enclave,

i.e., client → application.

As part of our measurement setup, We first deploy the code

from Figure 4—a minimalistic application that responds with

the string “hello world” upon receiving requests for the path

/hello-world. It’s important to use a minimalistic application

because we’re only interested in the latency that is caused by

the components before a request reaches the enclave applica-

tion.

To simulate clients, we use the HTTP load test tool Ba-

ton [19]. We run Baton on the parent EC2 host and instruct it

to send as many requests to the TCP proxy as possible within

30 seconds, using 50 concurrent threads. We had to patch

Baton’s source code to add VSOCK support (to be able to

send requests directly to the enclave via the VSOCK inter-

face) and to log latency percentiles. Note that our measure-

ments constitute a lower bound of the latency that is achiev-

able. Real-world applications will exhibit higher latency be-

cause clients send their requests over the Internet (which adds

considerable networking latency) and the enclave application

is likely to be more complex (which adds computational la-

tency).

Figure 8 illustrates the results for our three test setups. The

full pipeline is able to sustain 7,500 requests per second, with

a mean latency of 12.7 milliseconds. Removing the proxy

nearly doubles the requests to 14,100 per second and low-

ers the mean latency to 6.5. Finally, a direct connection to

the application—without proxy and VSOCK interface–once

again nearly doubles the number of requests, reaching 27,900

per second, with a mean latency of only 3.2 milliseconds. Fig-

ure 5.4 shows the empirical CDF of the same latency mea-

surements for our three test setups.

Next, we measure the throughput that we can achieve over

the VSOCK interface. To that end, we use a VSOCK-enabled

fork of the iperf3 performance measurement tool [20]. iperf3

11



40

60

80

100

10 20 30 40 50

Latency (ms)

E
m

p
ir

ic
al

C
D

F
(%

)

Test setup

Direct

Full

No Proxy

Figure 9: The empirical CDF of the latency distributions of

our three test setups.

measures the throughput of a networking link using a clien-

t/server model. In our experiment, we start an iperf3 server

instance inside the enclave and the corresponding client in-

stance on the parent EC2 host.14 The client then talks to the

server via the VSOCK interface and determines the maxi-

mum possible throughput. In this setup, iperf3 measured a

throughput of 4.09 GBit/s. For comparison, when running

both the iperf3 client and server on the EC2 host—which

effectively measures the throughput of the EC2 host’s loop-

back interface—we achieve 55.5 GBit/s of throughput.

To develop intuition on the perceived network perfor-

mance of Nitro enclaves, we built an enclave application that

acts as a SOCKS proxy. We then configured a browser to use

this enclave-enabled SOCKS proxy and browsed HD videos

on YouTube. We found that the experience was seamless:

videos loaded quickly, played smoothly, and there was no per-

ceivable latency impact when browsing the Web. We believe

that the high throughput and low latency, coupled with this

anecdotal user experience report suggests that our framework

is suitable for demanding and latency-sensitive networking

applications.

6 Limitations

We conclude the discussion of our framework by summariz-

ing its limitations.

An obvious limitation is the reliance of our framework on

Amazon, which acts as the root of trust. We mentioned in Sec-

tion 3.1 that all parties must trust Amazon. Note that this is

not a new limitation of secure enclaves—SGX-based appli-

cations must trust Intel while TrustZone-based applications

must trust ARM. Despite the lack of alternatives, placing

one’s trust in a single corporation’s proprietary technology

is problematic.

14The command that we ran on the server was “iperf3 --vsock -s” and

on the client “iperf3 --vsock -c 4.”

Our system fundamentally relies on at least some users au-

diting the service provider’s application that runs in a secure

enclave. Needless to say, not all users have the skills to audit

the service provider’s application and convince themselves

that the code is sound. In fact, even among the subset of

users that are programmers, only a fraction may feel comfort-

able auditing source code for vulnerabilities. So what are the

non-programmers to do? We envision users to congregate in

forums where matters related to the service providers are dis-

cussed. A tech-savvy subset of the users is going to organize

code reviews and make public their findings. Non-technical

users may then trust other users that audited the source code,

but this is no different from most other software: nobody au-

dits all the software that they use, ranging from the kernel

to the myriad of user space applications, even when source

code is available.

The Underhanded C Coding Contest [21] was about

implementing benign-looking code that was secretly mali-

cious. The contest attracted numerous impressive submis-

sions which showed that it can be surprisingly difficult to find

bugs even if one knows that there is a bug in a given piece of

code. Analogously, the service provider could try to hide sub-

tle, yet critical bugs in the code to exfiltrate information from

the enclave. On top of that, if the service provider ever gets

caught, it may have plausible deniability and pretend that the

exfiltration bug was an honest programming error. While we

are unable to solve this class of attacks, we can mitigate it by

keeping the trusted computing base in the enclave as small

as possible.

7 Related Work

Arnautov et al. present in their OSDI’16 paper a mecha-

nism that allows Docker containers to run in an SGX en-

clave [22]—conceptually similar to Nitro enclaves, which

are effectively compiled Docker images. In their 2022 arXiv

report, King and Wang [23] propose HTTPA—an SGX-

based extension to HTTP that makes a Web server attestable

to clients. Our framework also allows for attestable Web ser-

vices, but without modifications to HTTP.

Applications of Enclaves Researchers have proposed nu-

merous and diverse enclave-enabled systems, ranging from

DeFi oracles [24], to health apps for COVID-19 [25], to net-

working middleboxes [26]. Despite avid interest in academia,

large-scale, real-world deployments of enclaves are sparse.

In 2017, the Signal secure messenger published a blog post

on private contact discovery [27], which makes it possible for

Alice to discover which of the contacts in her address book

use Signal without revealing her contact list. The Signal team

accomplished this by relying on an SGX enclave that runs

the contact discovery code. Two years later, in 2019, the Sig-

nal team built its “secure value recovery” feature on SGX as

12



well [28].

Frameworks for Enclave Development To facilitate

working with enclaves, several frameworks have emerged

that abstract away complicated and error-prone low-level as-

pects of enclaves. Examples are Asylo [29] and Open En-

clave [30]—both libraries are implemented in C/C++ and are

hardware agnostic, meaning that the “enclave backend” can

be switched from, say, TrustZone to SGX. While frameworks

render enclave development more convenient, memory un-

safe languages like C and C++ make it dangerously easy to

introduce memory corruption bugs that jeopardize the secu-

rity of the enclave [12]. Cognizant of this issue, Wang et al.

implemented a performant Rust layer on top of Intel’s C++-

based SGX SDK, making it possible to develop memory-safe

applications in SGX [31].

Our framework is built in the memory-safe Go program-

ming language, which eliminates an entire class of bugs that

could jeopardize the security of enclave applications, and un-

like Asylo and Open Enclave, our framework only supports

Nitro enclaves because the security guarantees of a frame-

work are only as strong as the underlying enclave hardware,

and in the case of Intel, ARM, and AMD, side channel attacks

are a severe concern.

Attacks Against Enclaves Enclaves based on Intel’s SGX

technology share a CPU with untrusted code, which raises

the flood gates for side channel attacks. Consequently, at-

tacks have taken advantage of speculative execution [1, 32],

branch “shadowing” [33], the interface between SGX and

non-SGX code [34], software faults [2], shared caches [3],

and memory management [35]. Despite the considerable

number of practical attacks, there is opportunity to strengthen

SGX against side channel attacks. Oleksenko et al. intro-

duce in their ATC’18 paper a system that protects unmodi-

fied SGX applications from side channel attacks by execut-

ing the enclave code on a CPU separate from the untrusted

code. Note that this is the default for Nitro enclaves.

For a comprehensive overview of attacks against SGX, re-

fer to Fei et al.’s survey [36] and Nilsson et al.’s arXiv re-

port [37].

Among all currently-available commodity enclaves, In-

tel’s SGX has received the most attention from academia but

ARM’s TrustZone and AMD’s SEV have not been spared

and share SGX’s conceptual security flaws. In a CCS’19 pa-

per, Ryan demonstrates an attack that exfiltrates ECDSA pri-

vate keys from Qualcomm’s implementation of a hardware-

backed keystore which is based on TrustZone [38]. Similarly,

Li et al. showed in a USENIX Security’21 paper how an at-

tacker can exfiltrate private keys from AMD SEV-protected

memory regions. In a CCS’21 paper, Li et al. showed how

an attacker-controlled VM can read encrypted page tables,

and how an attacker can create an oracle for encryption and

decryption.

While Nitro enclaves are still young and have received

nowhere near the same scrutiny as SGX and friends, we

believe that their dedicated hardware resources provides

stronger protection from side channel attacks than enclaves

that are based on shared CPU resources.

Resources

The following list has URLs to all code repositories that are

mentioned throughout work.

• Enclave framework:

https://github.com/brave-experiments/nitriding

• Remote attestation tool set:

https://github.com/brave-experiments/

verify-enclave

• TCP proxy:

https://github.com/brave-experiments/viproxy

• SOCKS proxy:

https://github.com/brave-intl/bat-go/tree/

nitro-utils/nitro-shim/tools/socksproxy

• IP address pseudonymization system:

https://github.com/brave-experiments/ia2

• PROCHLO shuffler:

https://github.com/brave-experiments/p3a-shuffler

• Go application using Rust FFI:

https://github.com/brave-experiments/star-randsrv

References

[1] Jo Van Bulck et al. “Foreshadow: Extracting the Keys

to the Intel SGX Kingdom with Transient Out-of-

Order Execution”. In: USENIX Security. 2018. URL:

https://foreshadowattack.eu/foreshadow.pdf.

[2] Kit Murdock et al. “Plundervolt: Software-based Fault

Injection Attacks against Intel SGX”. In: Security

& Privacy. IEEE, 2020. URL: https://plundervolt.

com/doc/plundervolt.pdf.

[3] Ferdinand Brasser et al. “Software Grand Ex-

posure: SGX Cache Attacks Are Practical”.

In: WOOT. USENIX, 2017. URL: https://www.

usenix.org/system/files/conference/woot17/

woot17-paper-brasser.pdf.

[4] Confidential Computing concepts. URL: https://

cloud.google.com/compute/confidential-vm/

docs/about-cvm (visited on 05/19/2022).

[5] Azure confidential computing documentation. URL:

https://docs.microsoft.com/en-us/azure/

confidential-computing/ (visited on 05/19/2022).

13

https://github.com/brave-experiments/nitriding
https://github.com/brave-experiments/verify-enclave
https://github.com/brave-experiments/verify-enclave
https://github.com/brave-experiments/viproxy
https://github.com/brave-intl/bat-go/tree/nitro-utils/nitro-shim/tools/socksproxy
https://github.com/brave-intl/bat-go/tree/nitro-utils/nitro-shim/tools/socksproxy
https://github.com/brave-experiments/ia2
https://github.com/brave-experiments/p3a-shuffler
https://github.com/brave-experiments/star-randsrv
https://foreshadowattack.eu/foreshadow.pdf
https://plundervolt.com/doc/plundervolt.pdf
https://plundervolt.com/doc/plundervolt.pdf
https://www.usenix.org/system/files/conference/woot17/woot17-paper-brasser.pdf
https://www.usenix.org/system/files/conference/woot17/woot17-paper-brasser.pdf
https://www.usenix.org/system/files/conference/woot17/woot17-paper-brasser.pdf
https://cloud.google.com/compute/confidential-vm/docs/about-cvm
https://cloud.google.com/compute/confidential-vm/docs/about-cvm
https://cloud.google.com/compute/confidential-vm/docs/about-cvm
https://docs.microsoft.com/en-us/azure/confidential-computing/
https://docs.microsoft.com/en-us/azure/confidential-computing/


[6] AWS Nitro Enclaves. URL: https://aws.amazon.

com/ec2/nitro/nitro-enclaves/ (visited on

04/15/2022).

[7] Dayeol Lee et al. “Keystone: An Open Framework

for Architecting Trusted Execution Environments”. In:

EuroSys. ACM, 2020. URL: https://dl.acm.org/

doi/pdf/10.1145/3342195.3387532.

[8] vsock(7) — Linux manual page. URL: https://man7.

org/linux/man-pages/man7/vsock.7.html (visited

on 06/06/2022).

[9] kaniko. URL: https://github.com/

GoogleContainerTools/kaniko (visited on

04/20/2022).

[10] Richard Barnes, Jacob Hoffman-Andrews, Daniel

McCarney, and James Kasten. RFC 8555: Auto-

matic Certificate Management Environment (ACME).

2019. URL: https://datatracker.ietf.org/doc/

html/rfc8555 (visited on 06/03/2022).

[11] Challenge Types – Let’s Encrypt. URL: https://

letsencrypt.org/docs/challenge-types/#

http-01-challenge (visited on 06/06/2022).

[12] Jaehyuk Lee et al. “Hacking in Darkness: Return-

oriented Programming against Secure Enclaves”.

In: USENIX Security. 2017. URL: https://

www.usenix.org/system/files/conference/

usenixsecurity17/sec17-lee-jaehyuk.pdf.

[13] Andrea Bittau et al. “PROCHLO: Strong Privacy for

Analytics in the Crowd”. In: SOSP. ACM, 2017. URL:

https://static.googleusercontent.com/media/

research.google.com/en//pubs/archive/46411.

pdf.

[14] Jun Xu, Jinliang Fan, Mostafa Ammar, and Sue B.

Moon. “On the Design and Performance of Prefix-

Preserving IP Traffic Trace Anonymization”. In:

Internet Measurement Workshop. ACM, 2001. URL:

https://conferences.sigcomm.org/imc/2001/

imw2001-papers/69.pdf.

[15] Ramakrishna Padmanabhan et al. “DynamIPs: An-

alyzing address assignment practices in IPv4 and

IPv6”. In: CoNEXT. ACM, 2020. URL: https://www.

prichter.com/dynamips_conext20.pdf.

[16] chi. URL: https://github.com/go-chi/chi/ (vis-

ited on 05/25/2022).

[17] Nitro Security Module Interface for Go. URL:

https://github.com/hf/nsm (visited on

05/25/2022).

[18] Linux networking in Golang. URL: https://github.

com/milosgajdos/tenus (visited on 05/25/2022).

[19] Baton. URL: https://github.com/

americanexpress/baton (visited on 04/18/2022).

[20] Stefano Garzarella. iperf3: A TCP, UDP, SCTP,

and VSOCK network bandwidth measurement tool.

URL: https://github.com/stefano-garzarella/

iperf-vsock (visited on 06/06/2022).

[21] The Underhanded C Contest. 2015. URL: http://www.

underhanded-c.org (visited on 04/18/2022).

[22] Sergei Arnautov et al. “SCONE: Secure Linux Con-

tainers with Intel SGX”. In: OSDI. USENIX, 2016.

URL: https://www.usenix.org/system/files/

conference/osdi16/osdi16-arnautov.pdf.

[23] Gordon King and Hans Wang. HTTPA:

HTTPS Attestable Protocol. 2022. arXiv:

2110.07954v2 [cs.CR]. URL: https://arxiv.

org/pdf/2110.07954.pdf.

[24] Fan Zhang et al. “Town Crier: An Authenti-

cated Data Feed for Smart Contracts”. In: CCS.

ACM, 2016. URL: https://dl.acm.org/doi/pdf/10.

1145/2976749.2978326.

[25] Vikram Sharma Mailthody et al. “Safer Illinois and

RokWall: Privacy Preserving University Health Apps

for COVID-19”. In: CoronaDef. The Internet Society,

2021. URL: https://www.ndss-symposium.org/

wp-content/uploads/coronadef2021_23001_paper.

pdf.

[26] Juhyeng Han, Seongmin Kim, Jaehyeong Ha, and

Dongsu Han. “SGX-Box: Enabling Visibility

on Encrypted Traffic using a Secure Middlebox

Module”. In: APNet. ACM, 2017. URL: https://

conferences.sigcomm.org/events/apnet2017/

papers/sgxbox-han.pdf.

[27] Moxie Marlinspike. Technology preview: Private con-

tact discovery for Signal. Sept. 2017. URL: https://

signal.org/blog/private-contact-discovery/.

[28] Joshua Lund. Technology Preview for secure value re-

covery. Dec. 2019. URL: https://signal.org/blog/

secure-value-recovery/.

[29] Asylo. URL: https://github.com/google/asylo

(visited on 05/16/2022).

[30] Open Enclave SDK. URL: https://github.com/

openenclave/openenclave (visited on 05/16/2022).

[31] Huibo Wang et al. “Towards Memory Safe En-

clave Programming with Rust-SGX”. In: CCS.

ACM, 2019. URL: https://dl.acm.org/doi/pdf/10.

1145/3319535.3354241.

[32] Stephan van Schaik et al. “CacheOut: Leaking

Data on Intel CPUs via Cache Evictions”. In: Se-

curity & Privacy. IEEE, 2021. URL: https://

cacheoutattack.com/files/CacheOut.pdf.

14

https://aws.amazon.com/ec2/nitro/nitro-enclaves/
https://aws.amazon.com/ec2/nitro/nitro-enclaves/
https://dl.acm.org/doi/pdf/10.1145/3342195.3387532
https://dl.acm.org/doi/pdf/10.1145/3342195.3387532
https://man7.org/linux/man-pages/man7/vsock.7.html
https://man7.org/linux/man-pages/man7/vsock.7.html
https://github.com/GoogleContainerTools/kaniko
https://github.com/GoogleContainerTools/kaniko
https://datatracker.ietf.org/doc/html/rfc8555
https://datatracker.ietf.org/doc/html/rfc8555
https://letsencrypt.org/docs/challenge-types/#http-01-challenge
https://letsencrypt.org/docs/challenge-types/#http-01-challenge
https://letsencrypt.org/docs/challenge-types/#http-01-challenge
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-lee-jaehyuk.pdf
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-lee-jaehyuk.pdf
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-lee-jaehyuk.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/46411.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/46411.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/46411.pdf
https://conferences.sigcomm.org/imc/2001/imw2001-papers/69.pdf
https://conferences.sigcomm.org/imc/2001/imw2001-papers/69.pdf
https://www.prichter.com/dynamips_conext20.pdf
https://www.prichter.com/dynamips_conext20.pdf
https://github.com/go-chi/chi/
https://github.com/hf/nsm
https://github.com/milosgajdos/tenus
https://github.com/milosgajdos/tenus
https://github.com/americanexpress/baton
https://github.com/americanexpress/baton
https://github.com/stefano-garzarella/iperf-vsock
https://github.com/stefano-garzarella/iperf-vsock
http://www.underhanded-c.org
http://www.underhanded-c.org
https://www.usenix.org/system/files/conference/osdi16/osdi16-arnautov.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-arnautov.pdf
https://arxiv.org/abs/2110.07954v2
https://arxiv.org/pdf/2110.07954.pdf
https://arxiv.org/pdf/2110.07954.pdf
https://dl.acm.org/doi/pdf/10.1145/2976749.2978326
https://dl.acm.org/doi/pdf/10.1145/2976749.2978326
https://www.ndss-symposium.org/wp-content/uploads/coronadef2021_23001_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/coronadef2021_23001_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/coronadef2021_23001_paper.pdf
https://conferences.sigcomm.org/events/apnet2017/papers/sgxbox-han.pdf
https://conferences.sigcomm.org/events/apnet2017/papers/sgxbox-han.pdf
https://conferences.sigcomm.org/events/apnet2017/papers/sgxbox-han.pdf
https://signal.org/blog/private-contact-discovery/
https://signal.org/blog/private-contact-discovery/
https://signal.org/blog/secure-value-recovery/
https://signal.org/blog/secure-value-recovery/
https://github.com/google/asylo
https://github.com/openenclave/openenclave
https://github.com/openenclave/openenclave
https://dl.acm.org/doi/pdf/10.1145/3319535.3354241
https://dl.acm.org/doi/pdf/10.1145/3319535.3354241
https://cacheoutattack.com/files/CacheOut.pdf
https://cacheoutattack.com/files/CacheOut.pdf


[33] Sangho Lee et al. “Inferring Fine-grained Control

Flow Inside SGX Enclaves with Branch Shadowing”.

In: USENIX Security. 2017. URL: https://gts3.

org/assets/papers/2017/lee:sgx-branch-shadow.

pdf.

[34] Jo Van Bulck et al. “A Tale of Two Worlds: As-

sessing the Vulnerability of Enclave Shielding

Runtimes”. In: CCS. ACM, 2019. URL: https://

fahrplan.events.ccc.de/rc3/2020/Fahrplan/

system/event_attachments/attachments/000/

004/153/original/ccs19-tale.pdf.

[35] Wenhao Wang et al. “Leaky Cauldron on the Dark

Land: Understanding Memory Side-Channel Hazards

in SGX”. In: CCS. ACM, 2017. URL: https://

donnod.github.io/files/papers/ccs17.pdf.

[36] Shufan Fei, Zheng Yan, Wenxiu Ding, and Haomeng

Xie. “Security Vulnerabilities of SGX and Counter-

measures: A Survey”. In: ACM Computing Surveys

54.6 (2021). URL: https://dl.acm.org/doi/pdf/10.

1145/3456631.

[37] Alexander Nilsson, Pegah Nikbakht Bideh, and

Joakim Brorsson. A Survey of Published Attacks on

Intel SGX. 2020. arXiv: 2006.13598 [cs.CR]. URL:

https://arxiv.org/pdf/2006.13598.pdf.

[38] Keegan Ryan. “Hardware-Backed Heist: Extracting

ECDSA Keys from Qualcomm’s TrustZone”. In: CCS.

ACM, 2019. URL: https://sci-hub.se/https://

doi.org/10.1145/3319535.3354197.

15

https://gts3.org/assets/papers/2017/lee:sgx-branch-shadow.pdf
https://gts3.org/assets/papers/2017/lee:sgx-branch-shadow.pdf
https://gts3.org/assets/papers/2017/lee:sgx-branch-shadow.pdf
https://fahrplan.events.ccc.de/rc3/2020/Fahrplan/system/event_attachments/attachments/000/004/153/original/ccs19-tale.pdf
https://fahrplan.events.ccc.de/rc3/2020/Fahrplan/system/event_attachments/attachments/000/004/153/original/ccs19-tale.pdf
https://fahrplan.events.ccc.de/rc3/2020/Fahrplan/system/event_attachments/attachments/000/004/153/original/ccs19-tale.pdf
https://fahrplan.events.ccc.de/rc3/2020/Fahrplan/system/event_attachments/attachments/000/004/153/original/ccs19-tale.pdf
https://donnod.github.io/files/papers/ccs17.pdf
https://donnod.github.io/files/papers/ccs17.pdf
https://dl.acm.org/doi/pdf/10.1145/3456631
https://dl.acm.org/doi/pdf/10.1145/3456631
https://arxiv.org/abs/2006.13598
https://arxiv.org/pdf/2006.13598.pdf
https://sci-hub.se/https://doi.org/10.1145/3319535.3354197
https://sci-hub.se/https://doi.org/10.1145/3319535.3354197

	1 Introduction
	2 Background
	2.1 Secure Enclaves
	2.2 AWS Nitro Enclaves

	3 Framework Design
	3.1 Trust Assumptions
	3.2 Design Overview
	3.3 The Reproducible Build System
	3.4 Framework Components
	3.4.1 Seeding the Entropy Pool
	3.4.2 Enabling Networking
	3.4.3 End-to-end Secure Channel
	3.4.4 Remote Attestation
	3.4.5 Sharing Key Material
	3.4.6 Side-channel Attacks
	3.4.7 Ingesting Secrets
	3.4.8 An Example


	4 Applications
	4.1 IP Address Pseudonymizer
	4.2 k-anonymity Enforcer

	5 Evaluation
	5.1 Security Considerations
	5.2 Financial Cost
	5.3 Attestation Documents
	5.4 Application Latency and Throughput

	6 Limitations
	7 Related Work

